Khi cắt hình nón có chiều cao 16 cm và đường kính đáy 24 cm bởi một mặt phẳng song song với đường sinh của hình nón ta thu được thiết diện có diện tích lớn nhất gần với giá trị nào sau đây?
A. 170
B. 260
C. 294
D. 208
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi cắt hình nón bởi mặt phẳng song song với đường sinh của hình nón thì ta được thiết diện là một parabol.
Giả sử thiết diện như hình vẽ.
Khi đó ta luôn có A B ⊥ M H
Kẻ HE / /SA trong mặt phẳng (SAB)
Khi đó SA//(HME)
Đặt BH=x(0<x<24), ta có
S A = S O 2 + O A 2 = 16 2 + 12 2 = 20 c m
Xét tam giác AMB vuông tại M có
M H 2 = A H . B H = x 24 - x ⇒ M H = x 24 - x
(hệ thức lượng trong tam giác vuông).
Xét tam giác SAB có HE//SA
⇒ B H A B = H E S E ⇔ H E = x . 20 24 = 5 6 x
Thiết diện parabol có chiều cao H E = 5 6 x và bán kính r=MH=x(24-x)
Diện tích thiết diện là
≈ 207 , 8 c m 2
Dấu = xảy ra khi x=72-3x ⇔ x=18(tm)
Vậy diện tích lớn nhất của thiết diện là S ≈ 207 , 8 c m 2
Chọn đáp án D.
Đáp án B
Vậy khi vị trí mặt phẳng α cách đáy hình nón một khoảng h 3 thì khối trụ có diện tích lớn nhất
Đáp án D