Cho hàm số y = f(x). Hàm số y = f’(x) có đồ thị như hình vẽ dưới đây:
Tìm m để hàm số y = f x 2 - 2 m có ba điểm cực trị.
A. m ∈ ( - 3 2 ; 0 ]
B. m ∈ 3 ; + ∞
C. m ∈ 0 ; 3 2
D. m ∈ - ∞ ; 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Theo đồ thị ta có: f'(x) > 0
Ta có:
Cho y' = 0
Để hàm số có 3 điểm cực trị thì phương trình y' = 0 phải có 3 nghiệm bội lẻ
Ta thấy x = 0 là một nghiệm bội lẻ
Dựa vào đồ thị của y = f'(x) ta thấy x = 1 là nghiệm bội lẻ (không đổi dấu), do đó ta không xét trường hợp
Suy ra để hàm số có 3 điểm cực trị thì
TH1: x 2 = 2m có 2 nghiệm phân biệt khác 0 và x 2 = 2m + 3 vô nghiệm hoặc có nghiệm kép bằng 0
TH2. x 2 = 2m + 3 có 2 nghiệm phân biệt khác 0 và x 2 = 2m vô nghiệm hoặc có nghiệm kép bằng 0
Vậy hàm số của 3 điểm cực trị khi
Chọn A.
Phương pháp: T