Tìm số đo các góc của tam giác ABC biết số đo các góc Â, , tỉ lệ với:
a) 2; 3; 4. b) 1; 2; 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả 2 phần cậu đều áp dụng tính chất dãy tỉ số bằng nhau đi
dễ mà
tam giác ABC biết số do 3 góc tỉ lệ là 1 2 3
=> \(\dfrac{A}{1}=\dfrac{B}{2}=\dfrac{C}{3}\)
mà \(A+B+C=180^o\) (tổng 3 góc trong tam giác)
áp dụng DTSBN ta có
\(\dfrac{A}{1}=\dfrac{B}{2}=\dfrac{C}{3}=\dfrac{A+B+C}{1+2+3}=\dfrac{180}{6}=30\)
\(=>A=30\cdot1=30^o\\ B=30\cdot2=60^o\\ C=30\cdot3=90^o\)
tam giác ABC là tam giác vuông tại C
Tổng số đo các góc của hình tam giác luôn bằng 360 độ
Số đo của góc A là:360:(3+5+7)x3=72 độ
Số đo của góc B là:72:3x5=120 độ
Số đo của góc C là:360-120-72=168 độ
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)
Gọi các góc của \(\Delta ABC\) là :a,b,c
a, Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4};a+b+c=180^o\)
Áp dụng t/c dtsbn , ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180^o}{9}=20^o\)
\(\Rightarrow\left\{{}\begin{matrix}a=40^o\\b=60^o\\c=80^o\end{matrix}\right.\)
\(\Rightarrow\)Số đo các góc của \(\Delta ABC:....\)
b,Ta có : \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3};a+b+c=180^o\)
Áp dụng t/c dtsbn , ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180^o}{6}=30^o\)
\(\Rightarrow\left\{{}\begin{matrix}a=30^o\\b=60^o\\c=90^o\end{matrix}\right.\)
\(\Rightarrow\)Số đo các góc của \(\Delta ABC\):...
Gọi số đo ba góc của tg lần lượt là: \(a,b,c\left(a,b,c>0\right)\)
Áp dụng t/c dtsbn:
a. \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180^0}{9}=20\)
\(\Rightarrow\left\{{}\begin{matrix}a=40^0\\b=60^0\\c=80^0\end{matrix}\right.\)
câu b lm tương tự nhé!