K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

ai trả lời giúp mình vsyeu

Bài 6: 

a: Xét tứ giác AKDH có 

\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)

Do đó: AKDH là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=2,5(cm)

11 tháng 1 2022

a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)

b, áp dụng đl pytago vào tam giác vuông ABC có :

\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)

vì AD là trung tuyến tam giác vuông ABC nên :

\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)

c,vì AKDH là hình chữ nhật nên : DH//KA

mà D là trung điểm BC 

=>H là trung điểm AC

<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\) 

vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)

\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)

 

14 tháng 9 2023

Bài 3:

Ta có:

\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)

\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)  

Mà: \(sinN=\dfrac{MN}{NP}\)

\(\Rightarrow sin37^o=\dfrac{MN}{25}\)

\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)

Áp dung định lý Py-ta-go ta có:

\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

3:

a: Xét ΔABC có AC^2=BA^2+BC^2

nên ΔBAC vuông tại B

b: Xét ΔBAC vuông tại B có

sin A=BC/AC=42/58=21/29

cos A=AB/AC=40/58=20/29

tan A=BC/BA=21/20

cot A=BA/BC=20/21

c: Xét ΔABC vuông tại B có BH là đường cao

nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA

=>BH*58=40*42=1680

=>BH=840/29(cm)

BA^2=AH*AC

=>AH=BA^2/AC=40^2/58=800/29cm

CB^2=CH*CA

=>CH=CB^2/CA=42^2/58=882/29(cm)

ΔBHA vuông tại H có HE là đường cao

nênBE*BA=BH^2

=>BE*40=(840/29)^2

=>BE=17640/841(cm)

ΔBHC vuông tại H có HF là đường cao

nênBF*BC=BH^2

=>BF*42=(840/29)^2

=>BF=16800/841(cm)

Xét tứ giác BEHF có

góc BEH=góc BFH=góc EBF=90 độ

=>BEHF là hình chữ nhật

=>góc BFE=góc BHE(=1/2*sđ cung BE)

=>góc BFE=góc BAC

Xét ΔBFE và ΔBAC có

góc BFE=góc BAC

góc FBE chung

Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2

=>S AECF=S ABC*(1-(420/841)^2)

=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)

23 tháng 3 2022

a)

Áp dụng định lý pitago vào tam giác vuông ABC, có:

BC2=AB2+AC2BC2=AB2+AC2

⇒BC=√62+82=√100=10cm⇒BC=62+82=100=10cm

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

bn tham khảo

23 tháng 3 2022

a,Áp dụng Đ. L. py-ta-go, có:

BC2=AC2+AB2

=>BC2=82+62

           =64+36.

           =100.

=>BC=10cm.

b, Xét tg AHB và tg AHD, có:

AH chung

góc AHB= góc AHD(=90o)

HB= DH(gt)

=>tg AHB= tg AHD(2 cạnh góc vuông)

=>AB= AD(2 cạnh tương ứng)

c, Kẻ E với C, tạo thành cạnh EC.

    Kẻ E với B, tạo thành cạnh EB.

Ta có: góc BHA=90o, suy ra: góc BHA= góc EHC(2 góc đối đỉnh)

=>góc BHA= góc EHC(=90o)

=>ED vuông góc với AC(đpcm)

A C B H D E

28 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{5^2+4^2}=\sqrt{41}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH\cdot\sqrt{41}=5\cdot4\\BH\cdot\sqrt{41}=5^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{20\sqrt{41}}{41}\left(cm\right)\\BH=\dfrac{25\sqrt{41}}{41}\left(cm\right)\end{matrix}\right.\)

b: Xét ΔABC có AE là phân giác

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)

=>\(\dfrac{BE}{5}=\dfrac{CE}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BE}{5}=\dfrac{CE}{4}=\dfrac{BE+CE}{5+4}=\dfrac{\sqrt{61}}{9}\)

=>\(BE=\dfrac{5}{9}\sqrt{61}\left(cm\right);CE=\dfrac{4}{9}\sqrt{61}\left(cm\right)\)

c: Xét tứ giác AMEN có

\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)

=>AMEN là hình chữ nhật

Hình chữ nhật AMEN có AE là phân giác của góc MAN

nên AMEN là hình vuông

28 tháng 10 2023

Cảm ơn nhìuuuuuu☺️

 

25 tháng 3 2020

A B C H E F G

a) Ta có: AB = AE + EB ; AC = AF+ FC

mà AB = AC (gt); EB = CF (gt) 

=> AE = AF => t/giác AEF cân tại A 

          => \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

 T/giác ABC cân tại A => \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\) mà 2 góc này ở vị trí đồng vị

=> EF // BC => tứ giác EFCB là hình thang có \(\widehat{B}=\widehat{C}\)

=> BEFC là hình thang cân

b) Ta có: \(\widehat{AFE\:}=\widehat{AEF}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-40^0}{2}=70^0\)

\(\widehat{AFE\:}+\widehat{EFC\:}=180^0\) (kề bù) => \(\widehat{EFC\:}=180^0-\widehat{AFE\:}=180^0-70^0=110^0\)

c) Kẻ FG vuông góc với BC

Ta có: EF // BC (cmt)

  EH \(\perp\)BC (gt)

=> HE \(\perp\)EF

Xét tứ giác EFGH có \(\widehat{HEF}=\widehat{EHG}=\widehat{HGF}=90^0\)

=> EFGH là HCN => EH = FG = 5 cm

St/giác BFC = 5.10/2 = 25 (cm2)