Cho hình chóp SABC có đáy ABC là tam giác vuông tại B, AC vuông góc với mặt phẳng (ABC), AH là đường cao trong tam giác SAB. Trong các khẳng định sau, khẳng định nào là khẳng định sai?
A. A H ⊥ A C
B. A H ⊥ B C
C. S A ⊥ B C
D. A H ⊥ S C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là khẳng định sai.
Vì \(SB\perp\left(ABC\right)\) nên \(SB\perp BC\)
Nếu \(SA\perp BC\Rightarrow SA||SB\) hoặc SA trùng SB (đều vô lý)
Đáp án D
Khẳng định D sai, khẳng định A,B,C đúng vì ta có AH ⊥ (SAB).
Chọn D.
+) Ta có :
⇒ Suy ra : A đúng.
+) Ta có :
⇒ Suy ra : C đúng.
+) Mặt khác : AH ⊥ CD nên:
⇒ Suy ra : D sai.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow BC\perp AH\)
Mà \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\)
Các khẳng định đúng là (1) và (2)
Đáp án D
Khẳng định D sai, khẳng định A,B,C đúng vì ta có A H ⊥ S A B
Đáp án B
Vì ∆ A B C cân tại C và H là trung điểm của AB nên C H ⊥ A B .
Mà S A ⊥ A B C ⇒ S A ⊥ C H ⇒ C H ⊥ S A B ⇒ C H ⊥ S A C H ⊥ S B C H ⊥ A K ⇒
Các khẳng định A,C và D đúng. Khẳng định B sai.