Một chất điểm dao động điều hoà (dạng hàm cos) có chu kì T, biên độ A. Tốc độ trung bình của chất điểm khi pha của dao động biến thiên từ - 2 π / 3 đến π / 3 bằng
A. 3A/T
B. 4A/T
C. 3,6A/T
D. 2A/T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình: \(x=2cos\left(5\pi t-\dfrac{\pi}{4}\right)\)
a)Biên độ: \(A=2cm\)
Chu kì: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{5\pi}=0,4s\)
Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{0,4}=2,5Hz\)
Chiều dài quỹ đạo: \(L=2A=2\cdot2=4cm\)
b)Phương trình chất điểm:
Vận tốc: \(v=-\omega Asin\left(\omega t+\varphi\right)=-10\pi sin\left(5\pi t-\dfrac{\pi}{4}\right)\)
Gia tốc: \(a=-\omega^2Acos\left(\omega t+\varphi\right)=-500cos\left(5\pi t-\dfrac{\pi}{4}\right)\)
c)Em thay giá trị \(t=0,2s\) vào từng pt nhé.
Dao động này có biên độ \(A=5cm\)
Tần số góc là \(5\pi\left(rad/s\right)\)
Chu kì \(T=\dfrac{2\pi}{\omega}=0,4s\)
Và tần số là: \(f=\dfrac{1}{T}=\dfrac{1}{0,4}=2,5Hz\)
⇒ Chọn B
Để tính tốc độ trung bình của vật trong khoảng thời gian ngắn nhất khi đi từ vị trí có li độ x = A đến vị trí có li độ x = -A^2 - √2, ta cần biết hàm li độ của chất điểm dao động điều hoà.
Hàm li độ của chất điểm dao động điều hoà có thể được biểu diễn như sau: x(t) = A*cos(2πt/T)
Trong đó:
x(t) là li độ của chất điểm tại thời điểm tA là biên độ của dao độngT là chu kì của dao độngĐể tính tốc độ trung bình, ta sử dụng công thức: v(trung bình) = Δx/Δt
Trong trường hợp này, Δx là sự thay đổi li độ từ x = A đến x = -A^2 - √2, và Δt là khoảng thời gian tương ứng.
Δx = (-A^2 - √2) - A = -A^2 - √2 - A Δt = khoảng thời gian từ x = A đến x = -A^2 - √2 = T/4
Vậy, tốc độ trung bình của vật trong khoảng thời gian ngắn nhất là: v(trung bình) = Δx/Δt = (-A^2 - √2 - A) / (T/4)
Đáp án B