K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

Bài này mình làm rồi 

Nếu bn tik cho mik có thể mik sẽ nhớ

26 tháng 1 2016

em mới lớp 6 thui :( 

Đặt \(\hept{\begin{cases}x=2b+2c-a\\y=2c+2a-b\\z=2a+2b-c\end{cases}}\)

Vì a,b,c là độ dài ba cạnh của 1 tam giác nên \(x,y,z>0\)

Khi đó :

\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)

Ta có bất đẳng thức mới theo ẩn x,y,z : 

\(\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\ge1\)

\(\Leftrightarrow\frac{2}{9}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{2}{9}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{2}{9}\left(\frac{x}{z}+\frac{y}{z}\right)-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\ge1\)

Ta chứng minh bất đẳng thức phụ sau : 

\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)

Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)

\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))

Áp dụng , ta được :

\(\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{12}{9}-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{9}{9}\ge1\)(đúng)

Vậy bất đẳng thức được chứng minh 

29 tháng 11 2016

(chứng minh rằng\) x y 3 −1 - Online Math

13 tháng 5 2020

Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)

(vì \(xy\ne0\Rightarrow x,y\ne0\))

\(\Rightarrow x-1\ne0;y-1\ne0\)

\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)

\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)

\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)

\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)

\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)

24 tháng 9 2020

Trước hết ta sẽ chứng minh bổ đề phụ sau, với mọi a,b dương ta có: 

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

Thật vậy  biến đổi tương đương ta đưa về \(\left(a-b\right)^2\left(a^2+ab+b^2\right)=0\)

BĐT này luôn đúng, thế thì

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Rightarrow\left(a^4+b^4\right)\ge\frac{\left(a+b\right)\left(a^3+b^3\right)}{2}\)

\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\)

Như vậy ta có:

\(\hept{\begin{cases}\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\\\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\\\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\end{cases}}\)

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=1\)

Dấu '=' xảy ra khi x=y=z=1/3

24 tháng 9 2020

Đặng Ngọc Quỳnh  không cần a,b rồi suy ra x,y, quá lòng vòng

Bạn tham khảo cách làm tại đây

 Câu hỏi của Pham Quoc Cuong - Toán lớp 8 - Học toán với OnlineMath

3 tháng 11 2019

Ta có:

\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)

Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)

\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)

\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)

\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)

\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)

\(\Leftrightarrow x^2b-y^2a=0\)

\(\Leftrightarrow x^2b=y^2a\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)

Chúc bạn học tốt!

19 tháng 3 2020

\(\text{Σ}\frac{x^2}{\sqrt[3]{x^3+8}}=\text{Σ}\frac{x^2}{\sqrt[3]{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\text{Σ}\frac{x^2}{\frac{x+2+x^2-2x+4}{2}}=\text{2}\left(Σ\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BDT Cauchy-Schwarz:
\(VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-x-y-z+18}\)
Áp dụng BDT: \(9=3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2\Rightarrow x+y+z\ge3\)

\(\Rightarrow VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-3+18}=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+15}=2\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+xz\right)}\)
\(\ge2\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)^2}=1\)

Dấu = xảy ra khi x=y=z=1
 

10 tháng 1 2017

Theo đề bài ta có:

\(\left\{\begin{matrix}x\ge xy\\y\ge yz\\z\ge xz\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-xy\ge0\\y-yz\ge0\\z-xz\ge0\end{matrix}\right.\)

\(\Rightarrow x+y+z-xy-yz-xz\ge0\)

Xét tích

\(\left(1-x\right)\left(1-y\right)\left(1-z\right)=-\left(x+y+z-xy-yz-xz-1+xyz\right)\ge0\)

\(\Rightarrow x+y+z-xy-yz-xz\le1-xyz\)

\(0\le xyz\le1\) nên \(1-xyz\le1\)

Vậy \(x+y+z-xy-yz-xz\le1\)

2 tháng 9 2016

ĐKXĐ : \(x,y>0\)

a/ \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}+\frac{x+y}{\sqrt{xy}}\right)\)

\(=\left(\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right).\sqrt{x}}-\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}.\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{-\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x+y}=\sqrt{y}-\sqrt{x}\)

 

b/ Ta có ; \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)

\(\Rightarrow B=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)

 

 

 
8 tháng 2 2019

\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(A\le\frac{1+x-1}{x}+\frac{2+y-2}{2y}+\frac{3+z-3}{3z}=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

Vậy \(A_{max}=\frac{11}{6}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

8 tháng 2 2019

Xin lỗi bạn. Bài đó mk lm sai rồi.

Sửa:

Áp dụng BĐT AM-GM ta có:

\(A=\frac{1.\sqrt{x-1}}{x}+\frac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}.y}+\frac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}.z}\le\frac{\frac{1+x-1}{2}}{x}+\frac{\frac{2+y-2}{2}}{\sqrt{2}.y}+\frac{\frac{3+z-3}{2}}{\sqrt{3}.z}=\frac{1}{2}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}\)\(=\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{2.\sqrt{6}}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

Vậy \(A_{max}=\frac{\sqrt{6}+\sqrt{2}+\sqrt{3}}{2.\sqrt{6}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)