Cho hình chóp S.ABC có đáy là tam giác vuông tại A, biết S A ⊥ A B C và AB=2a, AC=3a, SA=4a. Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).
A. d = 12 a 61 61
B. d = 2 a 11
C. d = a 43 12
D. d = 6 a 29 29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Tam giác ABC vuông cân tại ⇒ A B = B C = 2 a .
Tam giác SHB vuông tại H, có S H = S B 2 − H B 2 = 2 a 2 .
Kẻ H K ⊥ S B K ∈ S B mà B C ⊥ S A B ⇒ H K ⊥ S B C
Suy ra: 1 H K 2 = 1 S H 2 + 1 B H 2 = 1 2 a 2 2 + 1 a 2 = 9 8 a 2
⇒ H K = 2 a 2 3
Vậy khoảng cách từ H → m p S B C là d = 2 a 2 3 .
Hạ \(SH\perp BC\Rightarrow\left(SBC\right)\perp\left(ABC\right)\)
\(\Rightarrow SH\perp BC;SH=SB.\sin\widehat{SBC}=a\sqrt{3}\)
Diện tích : \(S_{ABC}=\frac{12}{\boxtimes}BA.BC=6a^2\)
Thể tích : \(V_{s.ABC}=\frac{1}{3}S_{ABC}.SH=2a^3\sqrt{3}\)
Hạ \(HD\perp AC\left(D\in AC\right),HK\perp SD\left(K\in SD\right)\)
\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H,\left(SAC\right)\right)\)
\(BH=SB.\cos\widehat{SBC}=3a\Rightarrow BC=4HC\)
\(\Rightarrow d\left(B,\left(SAC\right)\right)=4d\left(H,SAC\right)\)
Ta có : \(AC=\sqrt{BA^2+BC^2}=5a;HC=BC-BH=a\)
\(\Rightarrow HD=BA.\frac{HC}{AC}=\frac{3a}{5}\)
\(HK=\frac{SH.HS}{\sqrt{SH^2+HD^2}}=\frac{3a\sqrt{7}}{14}\)
Vậy \(d\left(B,\left(SAC\right)\right)=4HK=\frac{6a\sqrt{7}}{7}\)
Đáp án A
Gọi I, H lần lượt là hình chiếu của A lên BC và SI
Ta có: 1 A I 2 = 1 A B 2 + 1 A C 2 = 1 2 a 2 + 1 3 a 2 = 13 36 a 2
1 A H 2 = 1 S A 2 + 1 A I 2 = 1 4 a 2 + 1 36 a 2 = 61 144 a 2
⇒ A I = 12 a 61 ⇒ d = A I = 12 a 61