Cho hình đa diện như hình vẽ, trong đó ABCD.A'B'C'D' là hình hộp chữ nhật với AB=2a, AA'=2a; S.ABCD là hình chóp có các cạnh bên bằng nhau và bằng a 3 . Thể tích của khối tứ diện SA'BD bằng
A. 2 a 3
B. 2 a 3 3
C. a 3 2 2
D. a 3 2 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Thể tích khối cầu ngoại tiếp tứ diện ABCD’ chính là thể tích khối cầu ngoại tiếp hình hộp chữ nhật ABCD.A’B’C’D’. Khi đó, bán kính khối cầu ngoại tiếp là R = A C ' 2 .
Ta có V = 4 3 πR 3 = 4 3 π . AC ' 3 8 = 9 2 πa 3 ⇒ AC ' 3 = 27 a 3 ⇒ AC ' = 3 a .
Mặt khác A C ' 2 = A B 2 + A D 2 + A A ' 2 ⇒ A D 2 = ( 3 a 2 ) - a 2 - ( 2 a ) 2 = 4 a 2 ⇒ A D = 2 a .
Vậy thể tích của hình hộp chữ nhật ABCD.A'B'C'D' là V = A A ' . A B . A D = a . 2 a . 2 a = 4 a 3 .
Bán kính mặt cầu ngoại tiếp hình hộp chữ nhật đã cho là:
Diện tích mặt cầu ngoại tiếp hình hộp chữ nhật đã cho là:
.
Chọn A.
Chọn C
Từ (1), (2) dễ dàng suy ra trung điểm I của
BD' là tâm mặt cầu ngoại tiếp tứ diện ABCD'
Ta có
Đáp án A
Vì qua 4 điểm không đồng phẳng tồn tại duy nhất mặt cầu do vậy mặt cầu ngoại tiếp tứ diện A B ' C D ' chính là mặt cầu ngoại tiếp hình chữ nhật ABCD.A'B'C'D'
⇒ R = A C ' 2 = A B 2 + A D 2 +AA ' 2 2 = a 14 2