Tìm giá trị lớn nhất của hàm số f ( x ) = x 3 - 3 x 2 - 9 x + 17 trên đoạn - 2 ; 4 .
A. 22
B. 55
C. 15
D. 44
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
a)
f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).
Hàm số đạt cực đại tại x = 0 và f C Đ = 5
Mặt khác, ta có f(-4) = f(4) = 3
Vậy
d) f(x) = | x 2 − 3x + 2| trên đoạn [-10; 10]
Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2 – 3x + 2.
Ta có:
g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2
Bảng biến thiên:
Vì
nên ta có đồ thị f(x) như sau:
Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132
e)
f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T = f(π/2) = 1
Mặt khác, f(π/3) = 2√3, f(5π/6) = 2
Vậy min f(x) = 1; max f(x) = 2
g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]
f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)
f′(x) = 0
⇔
Ta có: f(0) = 0,
Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2
f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]
f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)
f′(x) = 0
⇔
Ta có: f(0) = 0,
Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2
Chọn B
Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:
Từ bảng biến thiên ta có
Mặt khác
Suy ra
\(f'\left(x\right)=3x^2-m=0\Rightarrow x^2=\dfrac{m}{3}\)
TH1: \(m\le0\Rightarrow f\left(x\right)\) đồng biến trên R \(\Rightarrow\min\limits_{\left[1;3\right]}f\left(x\right)=f\left(1\right)=19-m\)
\(\Rightarrow19-m\le2\Rightarrow m\ge17\) (ktm)
TH2: \(m\in\left[3;27\right]\)
\(\Rightarrow x=\sqrt{\dfrac{m}{3}}\in\left[1;3\right]\) là nghiệm lớn hơn \(\Rightarrow\) luôn là điểm cực tiểu
\(\Rightarrow\min\limits_{\left[1;3\right]}f\left(x\right)=f\left(\sqrt{\dfrac{m}{3}}\right)=\dfrac{m}{3}\sqrt{\dfrac{m}{3}}-m\sqrt{\dfrac{m}{3}}+18=-\dfrac{2m}{3}\sqrt{\dfrac{m}{3}}+18\)
\(\Rightarrow-\dfrac{2m}{3}\sqrt{\dfrac{m}{3}}+18\le2\Rightarrow m\ge12\)
\(\Rightarrow12\le m\le27\)
TH3: \(0< m< 3\Rightarrow\sqrt{\dfrac{m}{3}}< 1\Rightarrow\) hàm đồng biến trên \(\left[1;3\right]\) quay về TH1 (ktm)
TH4: \(m>27\Rightarrow\left[1;3\right]\subset\left(-\sqrt{\dfrac{m}{3}};\sqrt{\dfrac{m}{3}}\right)\Rightarrow\) hàm nghịch biến trên \(\left[1;3\right]\)
\(\Rightarrow\min\limits_{\left[1;3\right]}f\left(x\right)=f\left(3\right)=45-3m\le2\Rightarrow m\ge\dfrac{43}{3}\)
\(\Rightarrow m>27\)
Vậy \(m\ge12\)
Đáp án A