Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và OB=OC=a 6 , OA=a, . Khi đó góc giữa hai mặt phẳng (ABC) và (OBC) bằng
A. 30 o
B. 90 o
C. 45 o
D. 60 o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: V O . A B C = 1 6 O A . O B . O C = 6 ⇒ O C = 3
Lại có 1 d O ; A B C 2 = 1 O A 2 + 1 O B 2 + 1 O C 2 ⇒ d O ; A B C = 12 41
Đáp án A
Theo giả thiết OA, OB, OC đôi một vuông góc với nhau nên O A ⊥ O B C , O C là hình chiếu của AC lên mặt phẳng O B C . Do đó, A C O ^ = 60 ° , O A là chiều cao của tứ diện OABC. Xét tam giác vuông AOC có tan 60 ° = O A O C với O A = a ⇒ O C = O A tan 60 ° = a 3 = a 3 3 ; O B = 2 a
Ta có S O B C = 1 2 O B . O C = 1 2 2 a . a 3 3 ; V O A B C = 1 3 O A . S O B C = 1 3 a . a 2 3 3 = a 3 3 9
Đáp án là A
Trong (OBC) kẻ OH ⊥ BC tại H thì có ngay BC ⊥ (OAH)
Do đó :
(vì tam giác OHA vuông tại O nên A H O ^ < 90 o )
Ta có
Ta giác OHA vuông tại O nên
Vậy góc giữa hai mặt phẳng (ABC) và (OBC) bằng 30 o