Tìm hai số nguyên biết: tổng của chúng bằng hai lần tích của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi hai số cần tìm là \(a,b\)trong đó \(a-b=4\).
TH1: Gấp \(a\)lên \(3\)lần.
\(\hept{\begin{cases}a-b=4\\3a-b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=56\\b=a-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=28\\b=24\end{cases}}\).
TH2: Gấp \(b\)lên \(3\)lần.
\(\hept{\begin{cases}a-b=4\\a-3b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=-56\\a=b+4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-24\\b=-28\end{cases}}\)
2. Gọi hai số là \(a,b\).
Có: \(\hept{\begin{cases}a+b=5\left(a-b\right)\\ab=24\left(a-b\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}4a=6b\\ab=24\left(a-b\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{2}{3}a\\\frac{2}{3}a^2=24\left(a-\frac{2}{3}a\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{2}{3}a\\\frac{2}{3}a^2-16a=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=0,b=0\\a=24,b=16\end{cases}}\)
Lời giải:
Gọi 2 số đó là $a$ và $b$. Theo bài ra thì:
$3(a+b)=2ab$
$\Leftrightarrow 3a+3b-2ab=0$
$\Leftrightarrow 6a+6b-4ab=0$
$\Leftrightarrow 2a(3-2b)-3(3-2b)=-9$
$\Leftrightarrow (2a-3)(3-2b)=-9$
Đến đây là dạng pt tích đơn giản rồi. Bạn chỉ cần xét TH thôi/
Tích của 2 số cần tìm là : 9 * 2 = 18
Nhẩm thấy 3 + 6 = 9 và 3 * 6 = 18, vậy 2 số cần tìm là 3 và 6.
gọi 2 số đó là a và b
có: a+b=a.b
=> a=a.b-b
=> a= b(a-1) (1)
=.> a chia hết cho a-1
<=> a-1=1=> a=2
(1) =>2=b.1
=> b=2
1 VÀ 1
(TỔNG CỦA CHÚNG = 2 )
(TÍCH CỦA CHÚNG = 1)
KÍ TÊN
TẠ UYỂN NHI
phải là tích bằng 2 lần tổng chứ bạn
3 và 6