K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

31 tháng 12 2018

12 tháng 1 2018

Chọn D.

Dựa vào bảng biến thiên suy ra hàm số nghịch biến trên (0;1)

25 tháng 11 2019

Chọn đáp án D

Phương pháp

Sử dụng cách đọc bảng biến thiên để suy ra khoảng đồng biến của hàm số.

Hàm số liên tục trên (a;b) có y’>0 với x thuộc (a;b) thì hàm số đồng biến trên (a;b).

Cách giải

Từ BBT ta có hàm số đồng biến trên các khoảng (-∞;-1) và (0;1).

17 tháng 4 2017

Chọn C

Xét hàm số g(x) =  f 3 ( x )   -   3 f ( x )  trên đoạn [-1;2]

Từ bảng biến thiên, ta có: 

Và  nên f(x) đồng biến trên [-1;2] 

nên (2) vô nghiệm

Do đó, g'(x) = 0 chỉ có  nghiệm là x = -1 và x = 2

Ta có 

Vậy 

17 tháng 9 2019

Nhận thấy trên đoạn [-2;2]

● Đồ thị hàm số có điểm thấp nhất có tọa độ (-2;-5) và (1;-5)

=> giá trị nhỏ nhất của hàm số này trên đoạn [-2;2] bằng - 5

● Đồ thị hàm số có điểm cao nhất có tọa độ (-1;1) và (-2;1)

 => giá trị lớn nhất của hàm số này trên đoạn [-2;2] bằng -1.

Chọn B.

27 tháng 7 2018

Chọn C

Giá trị lớn nhất của hàm số f(x) trên [-3;2], ta có:

M = 2, m = -4 suy ra M - m = 6

4 tháng 5 2019

Đáp án là C  

26 tháng 4 2018

Đáp án A

27 tháng 7 2019

Hàm số nghịch biến nếu f’(x)<0 Quan sát đồ thị y=f’(x), chọn đáp án A. Chọn A