Tập nghiệm của bất phương trình 1 3 x + 2 > 3 - x
A. 2 ; + ∞
B. 1 ; 2
C. ( 1 ; 2 ]
D. [ 2 ; + ∞ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Ta có: x + x < ( 2 x + 3 ) ( x - 1 )
Điều kiện: x ≥ 0
⇔ x + x < 2 x - 2 x + 3 x - 3
⇔ - x < - 3 ⇔ x > 3
Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3
Ta có :
2 x + 2 > 3 ( 2 - x ) + 1 ⇔ 2 x + 2 > 6 - 3 x + 1 ⇔ 5 x > 5 ⇔ x > 1 .
Vậy tập nghiệm của bất phương trình 2 x + 2 > 3 ( 2 - x ) + 1 là 1 ; + ∞ .
Đáp án là A.
Điều kiện: x ≤ 2
Với điều kiện trên ,bất phương trình đã cho trở thành:
3- 2x < x ⇔ - 3 x < - 3 ⇔ x > 1
Kết hợp điều kiện ta được: 1 < x ≤ 2
Tập nghiệm của bất phương trình là S = (1; 2]
Chọn A