Một lọ trống miệng đựng nước là hình trụ tròn xoay có chiều cao bằng 1,6dm; đường kính đáy bằng 1dm; đáy (dưới) của lọ phẳng với bề dày không đổi bằng 0,2dm; thành lọ với bề dày không đổi bằng 0,2dm; thiết diện qua trục của lọ như hình vẽ; đổ vào lọ 2,5dl nước (trước đó trong lọ không có nước hoặc vật khác). Tính gần đúng khoảng cách k từ mặt nước trong lọ khi nước lặng yên đến mép trên của lọ (quy tròn số đến hàng phần trăm, nghĩa là làm tròn số đến hai chữ số sau dấu phảy).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển hình trụ theo một đường sinh và trải phẳng ra ta được một hình chữ nhật có chiều rộng 20cm ,chiều dài bằng chu vi đáy của cái lọ: 10.3,14=31,4 (cm)
Theo đề bài, khi con kiến ở điểm A (hình dưới) cách đáy 17cm thì giọt mật ở điểm B cũng cách đáy 17cm.Khi đó con kiến cách giọt mật một khoảng cách bằng nửa chu vi đáy của cái lọ: 31,4 : 2 = 15,7 (cm)
Dựng điểm C đối xứng với B qua đường xy ,nối AC cắt xy tại D.Điểm D là điểm con kiến bò qua miệng của cái lọ đê vào bên trong thì đoạn đường BDA là ngắn nhất
Khai triển hình trụ theo một đường sinh và trải phẳng ra ta được một hình chữ nhật có chiều rộng 20cm ,chiều dài bằng chu vi đáy của cái lọ: 10.3,14=31,4 (cm)
Diện tích đáy của cái cốc là: \(\pi.4^2=16\pi\left(cm^2\right)\)
Thể tích của \(3\)viên bi là: \(3.\frac{4}{3}\pi.1^3=4\pi\left(cm^3\right)\)
Mực nước cao lên số cen-ti-mét là: \(\frac{4\pi}{16\pi}=0,25\left(cm\right)\)
Nước dâng cao cách miệng cốc: \(12-8-0,25=3,75\left(cm\right)\)
Trên mặt đáy tâm O ta gọi H là trung điểm của bán kính OP. Qua H kẻ dây cung AB ⊥ OP và nằm trong đáy (O; r). Các đường sinh AD và BC cùng với các dây cung AB và DC (thuộc đáy (O’, r)) xác định cho ta thiết diện cần tìm là một hình chữ nhật. Gọi S là diện tích hình chữ nhật này, ta có: SABCD= AB.AD trong đó AD = 2r còn AB = 2AH. Vì H là trung điểm của OP nên ta tính được AB = r 3 . Vậy S ABCD = 2 r 2 3