cho ba số abc thỏa mãn \({a\over b+c} + {b\over a+c} + {c\over b+a} = 1\)chứng minh \({a^2\over b+c} + {b^2\over a+c} + {c^2\over b+a} = 0\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
16 tháng 1 2022
\(b= {{a} \over b+a+c}+{{b} \over a+b+d}+{{c} \over b+c+d}+{{d} \over c+d+a}\)
16 tháng 1 2022
Có phải \(B=\frac{a+b}{a+c}+\frac{b+a}{b+d}+\frac{c+b}{c+d}+\frac{d+c}{d+a}\)không?