Giải phương trình: 13 x - 3 2 x + 7 + 1 2 x + 7 = 6 x - 3 x + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. `|x + 1| + |2x - 3| = |3x - 2|`
Ta có: \(\left|x+1\right|+\left|2x-3\right|\ge\left|x+1+2x-3\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left|3x-2\right|=\left|3x-2\right|\) (luôn đúng với mọi x)
Vậy phương trình có vô số nghiệm.
\(3\left(x^2-x+1\right)^2-2\left(x+1\right)^2=5.\)\(\left(x^3+1\right)\)
\(\Leftrightarrow3\left(x^2-x+1\right)^2-2\left(x+1\right)^2=5\left(x+1\right)\left(x^2-x+1\right)\)
Đặt \(x+1=a,x^2-x+1=b\), phương trình trở thành:
\(3b^2-2a^2=5ab\)
\(\Leftrightarrow3b^2-5ab-2a^2=0\)
\(\Leftrightarrow\)\(\left(3b+a\right)\left(b-2a\right)=0\)
\(\Leftrightarrow\left[3\left(x^2-x+1\right)+x+1\right]\left[x^2-x+1-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(3x^2-2x+4\right)\left(x^2-3x-1\right)=0\)
Vì \(3x^2-2x+4=\left(x-1\right)^2+2x^2+3>0\forall x\)nên:
\(x^2-3x-1=0:\left(3x^2-2x+4\right)\)
\(\Leftrightarrow x^2-3x-1=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{13}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{13}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}=\frac{\sqrt{13}}{2}\\x-\frac{3}{2}=\frac{-\sqrt{13}}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}}\)
Vậy phương trình có tập nghiệm: \(S=\left\{\frac{3\pm\sqrt{13}}{2}\right\}\)
\(2\left(x^2+x+1\right)^2-7\left(x-1\right)^2=13\)\(\left(x^3-1\right)\)
\(\Leftrightarrow2\left(x^2+x+1\right)^2-7\left(x-1\right)^2=13\left(x-1\right)\left(x^2+x+1\right)\)
Đặt \(x-1=a,x^2+x+1=b\), phương trình trở thành:
\(2b^2-7a^2=13ab\)\(x=4\)
\(\Leftrightarrow2b^2-13ab-7a^2=0\)
\(\Leftrightarrow\left(b-7a\right)\left(a+2b\right)=0\)
\(\Leftrightarrow\left[x^2+x+1-7\left(x-1\right)\right]\left[x-1+2\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(2x+1\right)\left(x+1\right)=0\)
-Xét các trường hợp sau:
+Với \(x-2=0\Leftrightarrow x=2\)
+Với \(x-4=0\Leftrightarrow x=4\)
+Với \(x+1=0\Leftrightarrow x=-1\)
+Với \(2x+1=0\Leftrightarrow x=-0,5\)
Vậy phương trình có tập nghiệm: \(S=\left\{-1;-0,5;2;4\right\}\)
a: \(\Leftrightarrow\dfrac{y+5}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)
\(\Leftrightarrow2\left(y+5\right)^2-\left(y-5\right)^2=y^2+25y\)
=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)
=>30y+25=25y
=>5y=-25
=>y=-5(loại)
b: \(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=0(nhận) hoặc x=3(loại)
c: =>x^2-9-6(2x+7)=-13(x+3)
=>x^2-9-12x-42+13x+39=0
=>x^2+x-6=0
=>(x+3)(x-2)=0
=>x=2(nhận) hoặc x=-3(loại)
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
a: =>x(x+3)=0
=>x=0 hoặc x=-3
b: =>x(1-2x)=0
=>x=0 hoặc x=1/2
c: =>(x-7)(2x+3-x)=0
=>(x-7)(x+3)=0
=>x=7 hoặc x=-3
d: =>(x-2)(3x-1-x-3)=0
=>(x-2)(2x-4)=0
=>x=2
a)
`x^2 +3x=0`
`<=>x(x+3)=0`
\(< =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b)
`x-2x^2 =0`
`<=>x(1-2x)=0`
\(< =>\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
c)
`(x-7)(2x+3)=x(x-7)`
`<=>(x-7)(2x+3)-x(x-7)=0`
`<=>(x-7)(2x+3-x)=0`
`<=>(x-7)(x+3)=0`
\(< =>\left[{}\begin{matrix}x-7=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
d)
`(x-2)(x+3)=(x-2)(3x-1)`
`<=>(x-2)(x+3)-(x-2)(3x-1)=0`
`<=>(x-2)(x+3-3x+1)=0`
`<=>(x-2)(-2x+4)=0`
\(< =>\left[{}\begin{matrix}x-2=0\\-2x+4=0\end{matrix}\right.\\ < =>x=2\)
\(a,\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\\ \Rightarrow7.\left(2x-1\right)-3.\left(5x+2\right)=21.\left(x+13\right)\\ \Rightarrow14x-7-15x-6=21x+273\\\Rightarrow -x-21x=273+13\\ \Rightarrow-22x=286\\ \Rightarrow x=-13\\ b,\dfrac{3\left(x+3\right)}{4}+\dfrac{1}{2}=\dfrac{5x+9}{3}-\dfrac{7x-9}{4}=0\\ \Rightarrow9.\left(x+3\right)+6=4.\left(5x+9\right)-3.\left(7x-9\right)=0\\\Rightarrow 9x+27+6=20x+36-21x+27\\ \Rightarrow9x+33=-x+63\\ \Rightarrow10x=30\\ \Rightarrow x=3\)
\(a,\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
\(\Rightarrow7\left(2x-1\right)-3\left(5x+2\right)-21x-273=0\)
\(\Rightarrow14x-7-15x-6-21x-273=0\)
\(\Rightarrow-22x=286\)
\(\Rightarrow x=-13\)
\(b,\dfrac{3\left(x+3\right)}{4}+\dfrac{1}{2}=\dfrac{5x+9}{3}-\dfrac{7x-9}{4}\)
\(\Rightarrow9\left(x+3\right)+6-4\left(5x+9\right)+3\left(7x-9\right)=0\)
\(\Rightarrow9x+27+6-20x-36+21x-27=0\)
\(\Rightarrow10x=30\Rightarrow x=3\)
Điều kiện xác định: x ≠ ±3; x ≠ -7/2.
⇒ 13(x + 3) + (x – 3)(x + 3) = 6(2x + 7)
⇔ 13x + 39 + x2 – 9 = 12x + 42
⇔ x2 + x – 12 = 0
⇔ x2 +4x – 3x – 12 = 0
⇔ x(x + 4) – 3(x + 4) = 0
⇔ (x – 3)(x + 4) = 0
⇔ x – 3 = 0 hoặc x + 4 = 0
x – 3 = 0 ⇔ x = 3 (không thỏa mãn đkxđ)
x + 4 = 0 ⇔ x = -4 (thỏa mãn đkxđ).
Vậy phương trình có tập nghiệm S = {-4}.