K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019



18 tháng 9 2019

Chọn đáp án D.

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O là...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0
25 tháng 9 2018

Bài khá dài đó.

Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!

ý kiến gì thì nhắn tin cho mik mai 7g

pp, ngủ ngon!

14 tháng 10 2019

Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé

11 tháng 10 2020

Help me pls T^T

loading...

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔPAM vuông tại P và ΔQAM vuông tại Q có

AM chung

\(\widehat{PAM}=\widehat{QAM}\)

Do đó: ΔPAM=ΔQAM

=>PA=QA và MP=MQ

b: AP=AQ

=>A nằm trên đường trung trực của PQ(1)

MP=MQ

=>M nằm trên đường trung trực của PQ(2)

Từ (1) và (2) suy ra AM là đường trung trực của PQ

=>AM\(\perp\)PQ

Giúp mình với ạ mình đang cần gấpBài toán 1: Cho tam giác ABCD nhọn, đường cao AH. Các điểm M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, AC, CH, BH:a) CM: NP // MQb) CM rẳng MNPQ là hình chữ nhậtc) Tìm điều kiện của tam giác ABC để tứ giác MNPQ là hình vuông Bài toán 2: Cho hình thoi MNPQ, gọi I là giao điểm của hai đường chéo. Vẽ đường thăng qua M song song với NQ, vẽ đường thăng qua...
Đọc tiếp

Giúp mình với ạ mình đang cần gấp

Bài toán 1: Cho tam giác ABCD nhọn, đường cao AH. Các điểm M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, AC, CH, BH:

a) CM: NP // MQ

b) CM rẳng MNPQ là hình chữ nhật

c) Tìm điều kiện của tam giác ABC để tứ giác MNPQ là hình vuông

 

Bài toán 2: Cho hình thoi MNPQ, gọi I là giao điểm của hai đường chéo. Vẽ đường thăng qua M song song với NQ, vẽ đường thăng qua N song song với MP. Hai đường thăng đó cắt nhau tại A.

a) Tứ giác AMIN là hình gì? Vì sao? 

b) Chứng minh rằng : AI = MQ. c) Tìm điều kiện của hình thoi MNPQ để tứ giác AMIN là hình vuông. 

 

Bài toán 3 : Cho AH là đường cao của hình thang cân ABCD (AB // CD ; AB < CD). Lấy điểm M sao cho CM = AB. Gọi K là điểm đối xứng với A qua H. 

a) Chứng minh : Tứ giác ABCM là hình bình hành. 

b) Chứng minh : ADKM là hình thoi. 

c) Gọi E, F lần lượt là hình chiếu của A trên KD và KM. Chứng minh EF // CD. 

d) Chứng minh rằng : Nếu tứ giác ADKM trở thành hình vuông thì AD I CB.:

0
19 tháng 5 2022

Hạ đường cao AH.

△ABC cân tại A có: AH là đường cao nên AH cũng là trung tuyến.

\(\Rightarrow\)H là trung điểm BC.

△ABH vuông tại H có: \(AH^2+BH^2=AB^2\)(định lí Py-ta-go)

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{17^2-\left(\dfrac{30}{2}\right)^2}=8\left(cm\right)\)

△ABC có: M là trung điểm AB, N là trung điểm AC.

\(\Rightarrow\)MN là đường trung bình của △ABC nên \(MN=\dfrac{BC}{2}=\dfrac{30}{2}=15\left(cm\right)\)

và MN//BC.

Tứ giác MNPQ có: MN//BC, \(\widehat{MQP}=\widehat{MPQ}=90^0\)

\(\Rightarrow\)MNPQ là hình chữ nhật nên MQ//AH.

△ABH có: M là trung điểm AB, MQ//AH.

\(\Rightarrow\)Q là trung điểm BH nên MQ là đường trung bình của △ABH.

\(\Rightarrow MQ=\dfrac{AH}{2}=\dfrac{8}{2}=4\left(cm\right)\)

\(S_{MNPQ}=MQ.MN=8.15=120\left(cm\right)\)