Trong mặt phẳng cho một hình lục giác đều cạnh bằng 2. Tính thể tích của hình tròn xoay có được khi quay hình lục giác đó quanh đường thẳng đi qua hai đỉnh đối diện của nó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: B
Khối tròn xoay được tạo thành bởi lục giác ABCDEF có thể tích gấp đôi khối tròn xoay (H) được tạo thành bởi hình thang ABCF.
Gọi V* là thể tích của khối nón tạo bởi tam giác đều SAB
Do đó ta có: V = 2 V ( H ) và
V ( H ) = 8 V * - V * = 7 V * = 7 πa 3 3 24
Kết luận: ta có thể tích cần tìm là
Gọi thể tích của khối tròn xoay là V, thể tích
khối nón là V 1 và thể tích của khối trụ là V 2 .
Đáp án D
Khi quay lục giác đều đã cho quanh AD ta được 2 hình nón và 1 hình trụ
Hình trục có chiều cao h = B C = 4.
Bán kính đáy r = B H = 4 3 2 = 2 3 .
Hình nón có chiều cao h ' = A H = 2 , bán kính đáy r = B H = 2 3 ; V = π r 2 h + 2 3 π r 2 h ' = 64 π
Đáp án D
Khi quay lục giác đã cho quanh AD ta được 2 hình nón và một hình trụ
Hình trụ có chiều cao h = B C = 4 và bán kính đáy r = B H = 4 3 2 = 2 3
Hình nón có chiều cao h ' = A H = 2 và bán kính đáy r = B H = 2 3
Khi đó V = π r 2 h + 2 3 π r 2 h ' = 64 π .
Chọn C