Cho hai số thực dương a và b thỏa mãn a 2 + b 2 = 98 a b . Khẳng định nào sau đây đúng ?
A. 2 log 2 a + b = log 2 a + log 2 b
B. log 2 a + b 2 = log 2 a + log 2 b
C. 2 log 2 a + b 10 = log 2 a + log 2 b
D. log 2 a + b 10 = 2 log 2 a + log 2 b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Cách 1: Cho a= 4; b= 2 ta thấy log24> 1> log42
Cách 2: Ta có: 1< a< b nên
\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)
=>B
Chọn D
Cho ta thấy logab= 2 và logba= ½. Do vậy logba< 1< logab
Ta có: a – b = 2 nên a= b +2.
Khi đó; tích a b = b + 2 . b = b 2 + 2 b = b 2 + 2 b + 1 - 1 = b + 1 2 - 1 ≥ - 1 ∀ b
Vậy tích ab nhỏ nhất là -1 khi b = -1 ; a= 1
Đáp án C
Cách 1: Tư duy tự luận
Ta có a 2 3 > a 3 5 2 3 > 3 5 ⇒ a > 1 và log b 2 3 < log b 3 5 . 2 3 > 3 5 ⇒ 0 < b < 1. Vậy log a b < 0 log b a < 0
Cách 2: Sử dụng máy tính cầm tay
Chọn các giá trị
a = 0,5 ∈ 0 ; 1 ; a = 1,5 ∈ ( 1 ; + ∞ ) ; b = 0,3 ∈ ( 0 ; 1 ) ; b = 1,3 ∈ ( 1 ; + ∞ )
Ta chọn được các giá trị a =1,5 và b = 0,3 thỏa mãn điều kiện.
Ấn tiếp
Vậy log a B < 0 và log b a < 0.
Chọn C.
Phương pháp: Để làm tốt dạng toán này chúng ta cần quan sát 4 đáp án xem có đặc điểm gì chung. Từ đó tìm ra phép biến đổi phù hợp.