Cho hàm số y=f(x). Hàm số y=f'(x) có đồ thị như hình bên. Hàm số y=f(2-x) đồng biến trên khoảng
A. (1;3)
B. (2; + ∞ )
C. (-2;1)
D. - ∞ ; - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng đặc biệt hóa. Ta thử các giá trị cụ thể của x để xét sự đồng biến với lưu ý hàm số đồng biến thì x 1 > x 2 ⇒ f x 1 > f x 2 trên mỗi khoảng đang xét.
Đáp án cần chọn là C
Ta có:( f( 2-x) )’= ( 2-x)’.f’(2-x) = -f’(2-x)
Hàm số đồng biến khi
Chọn D.
Chọn C
+ Áp dụng công thức đạo hàm của hàm hợp ta có:
g’( x) = ( 2-x)’. f’( 2-x) = -f’( 2-x)
+ Nhận xét: Hàm số y= f( x) đã cho nghịch biến trên các khoảng (- ∞; -1) và ( 1;4) ( trên 2 khoảng đó f’(x) < 0) .
+ Hàm số đồng biến khi và chỉ khi
Đáp án A
Phương pháp:
Tính y’, giải bất phương trình y’>0
Cách giải:
Với
Đáp án C.
Dựa vào đồ thị của hàm số
Ta có (f(2-x))'=-f '(2-x)
Để hàm số y=f(2-x) đồng biến thì: