Cho tứ diện ABCD có đáy BCD là tam giác đều, trọng tâm G. Δ là đường thẳng qua G và vuông góc với (BCD). A chạy trên Δ sao cho mặt câu ngoại tiếp ABCD có thể tích nhỏ nhất. Khi đó thể tích khối ABCD là:
A. a 3 12
B. a 3 2 12
C. a 3 3 12
D. a 3 3 6
Đáp án A.
Gọi I là tâm mặt cầu ngoại tiếp ABCD ⇒ I ∈ Δ và I A = I B = R
Thể tích mặt cầu ngoại tiếp ABCD nhỏ nhất <=> IB nhỏ nhất
⇔ I B ⊥ Δ ⇔ I ≡ G ⇒ I A = I B = B G = a 3 3 = A G ⇒ V A B C D = 1 3 S B C D . A G = 1 3 . 1 2 . a . a 3 2 . a 3 3 = a 2 12