K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

B = 2 3 + 3. 1 9 0 − 2 − 2 .4 + − 2 2 : 1 2 .8 = 8 + 3.1 − 1 4 .4 + 4 : 1 2 .8 = 10 + 64 = 74

20 tháng 12 2021

1) A. 999.

2) C. 9.

20 tháng 12 2021

1: A

2: C

18 tháng 4 2023

`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`

Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`

`b)` Với `x >= 0,x ne 4` có:

`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[\sqrt{x}-2]/[\sqrt{x}-3]`

`c)` Với `x >= 0,x ne 4` có:

`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`

Có: `C >= 1`

`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`

`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`

`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`

  Vì `x >= 0=>\sqrt{x} >= 0`

  `=>\sqrt{x}-3 > 0`

`<=>x > 9` (t/m đk)

loading...  loading...  

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) a) Tính giá trị biểu thức A khi x = 9b) Tìm x để A = 3 c) Tìm giá trị nhỏ nhất của A 2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)b) Tìm x để B có giá trị âmc) Tìm giá trị nhỏ nhất của B 3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0;...
Đọc tiếp

1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 ) 

a) Tính giá trị biểu thức A khi x = 9

b) Tìm x để A = 3 

c) Tìm giá trị nhỏ nhất của A 

2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9) 

a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)

b) Tìm x để B có giá trị âm

c) Tìm giá trị nhỏ nhất của B 

3) Cho biểu thức C =  \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1 

a) Tìm x để C = 7

b) Tìm x để C > 6 

c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\) 

4) Cho biểu thức D =  \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1 

a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0 

b) Tìm x để D có giá trị là \(\dfrac{1}{2}\) 

c) Tìm x để D có giá trị nguyên

5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9 

a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\) 

b) Tìm điều kiện của x để E < 1 

c) Tìm x nguyên để E có giá trị nguyên 

2

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

7 tháng 9 2021

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

22 tháng 10 2023

Giúp em với ạ

27 tháng 10 2023

Bài `1`

\(\sqrt{4-2\sqrt{3}}-\dfrac{2}{\sqrt{3}+1}+\dfrac{\sqrt{3}-3}{\sqrt{3}-1}\\ =\sqrt{3-2\sqrt{3}+1}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}+1-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}\\ =-\sqrt{3}\)

27 tháng 10 2023

2:

a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)

b: B=5

=>\(5\left(\sqrt{x}+3\right)=\sqrt{x}+8\)

=>\(5\sqrt{x}+15=\sqrt{x}+8\)

=>\(4\sqrt{x}=-7\)(loại)

Vậy: \(x\in\varnothing\)

18 tháng 4 2023

`a, 3/4 + 1/2 xx 7/2`

`= 3/4 + 7/4`

`=10/4`

`=5/2`

`b, 6/15 - 1/3 : 5/3`

`= 6/15 - 1/3 xx 3/5`

`= 6/15 - 3/15`

`= 3/15`

`=1/5`

`c, x-4/9 = 3/7 : 9/4`

`=> x-4/9= 3/7 xx 4/9`

`=> x-4/9= 12/63`

`=> x-4/9=4/21`

`=> x= 4/21 +4/9`

`=>x= 40/63`

`d, 7/9 xx 3/5 -1/2=1/5`

`->` sao lại bằng có `x` ko vậy ạ?

`a,`

`3/4+1/2 \times 7/2=3/4+7/4=10/4=5/2`

`b,`

`6/15 - 1/3 \div 5/3=6/15-1/5=1/5`

`c,` Tìm x?

`x-4/9=3/7 \div 9/4`

`x-4/9=4/21`

`x=4/21+4/9`

`x=40/63`

`d, 7/9x \times 3/5-1/2=1/5`

`7/9x \times 3/5=1/5+1/2`

`7/9x \times 3/5=7/10`

`7/9x=7/10 \div 3/5`

`7/9x=7/6`

`x=7/6 \div 7/9=3/2`