Cho ∫ - 1 2 f ( x ) d x = 2 và ∫ - 1 2 g ( x ) d x = - 1 . Tính ∫ - 1 2 [ x + 2 f ( x ) - 3 g ( x ) ] d x
A. I = 5 2
B. I = 7 2
C. I = 17 2
D. I = 11 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) thay x=1 vào đa thức f(x) ta có: f(1)=4.1^3-1^2+2.1-5
=4-2+2-5
=- 1
vậy 1 k phải là nghiệm của đa thức f(x)
MÌNH CHỈ LÀM ĐƯỢC C THÔI HOK TỐT
làm sai nha chỗ nào là 1 thì thay bằng -1 nha kq sẽ ra nha
a) Ta có:+) f(x) = 2x2(x - 1) - 5(x - 2) - 2x(x - 2)
f(x) = 2x3 - 2x2 - 5x + 10 - 2x2 + 2x
f(x) = 2x3 - 4x2 - 3x + 10
f(x) = 2x3 - 2x2 - 5x + 10
+) g(x) = x2(2x - 3) - x(x + 1) - (3x - 2)
g(x) = 2x3 - 3x2 - x2 - x - 3x + 2
g(x) = 2x3 - 4x2 - 4x + 2
b) f(2) = 2.23 - 4. 22 - 3.2 + 10 = 16 - 16 - 6 + 10 = 4
g(-2) = 2.(-2)3 - 4.(-2)2 - 4.(-2) + 2 = 2 . 8 - 4.4 + 8 + 2 = 10
c) H(x) = f(x) - g(x) = (2x3 - 4x2 - 3x + 10) - (2x3 - 4x2 - 4x + 2)
H(x) = 2x3 - 4x2 - 3x + 10 - 2x3 + 4x2 + 4x - 2
H(x) = (2x3 - 2x3) - (4x2 - 4x2) - (3x - 4x) + (10 - 2)
H(x) = x + 8
=> f(x) - g(x) = A(x) = -x - 8
d) Ta có: H(x) = 0
=> x + 8 = 0
=> x = -8
a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3
g(-1) = 0,5; g(-2) = 2; g(0) = 0
b) f(x) = 2 ⇒ x = 1
g(x) = 2 ⇒ x = 2 hoặc x = -2
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)
Đáp án C