Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng tiếp xúc với ( S ) : x 2 + y 2 + z 2 - 2 x - 4 y - 6 z - 2 = 0 và song song với α : 4x+3y-12z+10=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Pt pháp tuyến của mặt phẳng cần tìm là n ⇀ = d , ⇀ ∆ ⇀ = (1;0;1)
Pt có dạng: x+z+D=0
Khoảng cách từ O (-1;1;-2) đến mp là 2
⇒ D=1
Pt có dạng : x+z+1=0
Ta có: (S) có tâm I 1 , 0 , - 2 và bán kính R = 6 .
d 1 có VTCP là: u 1 → 3 , - 1 , - 1
d 2 có VTCP là: u 2 → 1 , 1 , - 1
Ta có:
Khi đó ta có phương trình (P) có dạng:
x + y + 2 z + d = 0
Mặt phẳng (p) tiếp xúc với mặt cầu
Chọn B.
Chọn A
Gọi I là tâm mặt cầu (S). Khi đó I (t; 1+t; 2+t) và ta có:
Vậy mặt cầu (S) có tâm I (1;2;3) và bán kính
Do đó mặt cầu (S) có phương trình:
Chọn D
Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.
Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.
Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)
Mặt phẳng (P) tiếp xúc với (S) nên
Thay 3a=2 (c+b ) vào (*) ta được:
TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).
TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ ⊂ (P))
Đáp án là A.
+ Mặt phẳng chứa Ox có dạng B y + C z = 0
+ Do mặt cầu tiếp xúc với mặt phẳng nên:
2 B − C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3
Vậy mặt phẳng cần tìm 4 y + 3 z = 0
Đáp án là A.
+ Mặt phẳng chứa Ox có dạng By+Cz=0
+ Do mặt cầu tiếp xúc với mặt phẳng nên 2 B - C B 2 + C 2 = 1 ⇔ B = 0 B = 4 , C = 3
Vậy mặt phẳng cần tìm 4y +3z=0
Đáp án D
Phương pháp:
(P)// α => Phương trình mặt phẳng (P) có dạng 4x+3y-12z+D=0 (D khác 10)
(P) tiếp xúc với (S) => d(I;(P))= R với I; R là tâm và bán kính mặt cầu (S) .
Cách giải:
Gọi mặt phẳng là mặt phẳng cần tìm.
(P)// α =>Phương trình mặt phẳng có dạng 4x+3y-12z+D=0 (D khác 10)
Mặt cầu (S) có tâm I(1;2;3), bán kính R=4
Vậy mặt phẳng (P) thỏa mãn yêu cầu bài toán có phương trình