Cho hình lăng trụ đứng ABC.A’B’C’có đáy là tam giác vuông và AB=BC=a, AA'= a 2 . Gọi M là trung điểm của BC. Tính khoảng cách d của hai đường thẳng AM và B’C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Tam giác ABC vuông và AB=BC=a nên ΔABC chỉ có thể vuông tại B.
Ta có A B ⊥ B C A B ⊥ B B ' ⇒ A B ⊥ B C B '
Kẻ
⇒ d = d B ' C , M N = d B ' C , A M N = d C , A M N = d B , A M N
Tứ diện BAMN là tứ diện vuông
Đặt hệ trục Oxyz vào lăng trụ, với gốc O trùng B, tia BA trùng Ox, tia BC trùng Oy, tia BB' trùng Oz. Quy ước a là 1 đơn vị độ dài.
Ta có tọa độ các điểm: \(A\left(2;0;0\right)\) ; \(B\left(0;0;0\right)\) ; \(C\left(0;2;0\right)\); \(B'\left(0;0;2\sqrt{2}\right)\)
Do M là trung điểm BC \(\Rightarrow M\left(0;1;0\right)\)
\(\overrightarrow{u_{AM}}=\overrightarrow{AM}=\left(-2;1;0\right)\); \(\overrightarrow{u_{B'C}}=\overrightarrow{B'C}=\left(0;2;-2\sqrt{2}\right)\)
\(\overrightarrow{AC}=\left(-2;2;0\right)\) (A là điểm thuộc đường AM, C là điểm thuộc đường B'C)
\(\left[\overrightarrow{u_{AM}};\overrightarrow{u_{B'C}}\right]=\left[-2\sqrt{2};-4\sqrt{2};-4\right]\)
Áp dụng công thức k/c hai đường chéo nhau:
\(d\left(AM;B'C\right)=\dfrac{\left|\left[\overrightarrow{u_{AM}};\overrightarrow{u_{B'C}}\right].\overrightarrow{AC}\right|}{\left|\left[\overrightarrow{u_{AM}};\overrightarrow{u_{B'C}}\right]\right|}=\dfrac{2a\sqrt{7}}{7}\) (sau khi đã đổi lại 1 đơn vị độ dài bằng a)
Bạn kiểm tra lại tính toán
Em chào anh ạ! Sau bao lâu anh cũng online, anh vào giúp em câu này ạ, có lời giải trên mạng em không hiểu vì sao có rất nhiều cặp số chia hết cho 3 nhưng người ta chỉ lấy 7 cặp thôi, chưa đủ anh ạ!
https://hoc24.vn/cau-hoi/cho-tap-hop-so-a-0123456hoi-co-the-thanh-lap-bao-nhieu-so-co-4-chu-so-khac-nhau-va-chia-het-cho-3.7684280688607
Lời giải.
Gọi H là trung điểm của BB' => HM//B'C
Theo đề, ABC.A'B'C' là lăng trụ đứng và ∆ ABC vuông tại B (vì AB = BC = a)
=> tứ diện BAHM có BA, BH, BM đôi một vuông góc nhau. Khi đó
Đáp án là A
Gọi E là trung điểm của B B ' . Khi đó B ' C / / A M E ⇒ d A M ; B ' C = d B ' C ; A M E .
Mặt khác d B ; A M E = d C ; A M E . Gọi h = d B ; A M E
Vì tứ diện B A M E có B A ; B M ; B E đôi một vuông góc với nhau.
⇒ 1 h 2 = 1 B A 2 + 1 B M 2 + 1 B E 2 ⇒ 1 h 2 = 1 a 2 + 4 a 2 + 2 a 2 = 7 a 2 ⇒ h = a 7 7 ⇒ d B ' C ; A M = a 7 7 .
Đáp án A
Gọi E là trung điểm của BB' => ME//B'C => (AME)//B'C
= d(C;(AME))
Vì
Gọi h là khoảng cách từ B đến mặt phẳng (AME).
Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên :