K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Chọn B

Ta có hàm số  f x đồng biến trên a ; b .

Do đó với mọi x 1 , x 2 ∈ a ; b và x 1 < x 2

suy ra f x 1 < f x 2 .

Nên  f 4 3 > f 5 4

7 tháng 2 2019

Đáp án là C 

I.Sai ví dụ hàm số y = x 3  đồng biến trên

(−¥; +¥) nhưng y' ³  0, "x Î (−¥; +¥

II.Đúng

III.Đúng

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

10 tháng 11 2017

5 tháng 7 2017

20 tháng 12 2017

Đáp án A

17 tháng 12 2018

Đặt g ( x ) = 3 f ( x ) - x 3 . Hàm số ban đầu có dạng y=|g(x)| 

Ta có g ' ( x ) = 3 f ' ( x ) - 3 x 2 .

Cho g'(x)=0 ⇔ [ x = 0 x = 1 x = 2

 

Dễ thấy g(0)=0. Ta có bảng biến thiên

Dựa vào BBT suy ra hàm số y=|g(x)| đồng biến trên khoảng (0;2) và a ; + ∞ với g(a)=0

Chọn đáp án C.

5 tháng 8 2023

ĐỀ ĐÂY NHA
loading...

loading...

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

7 tháng 7 2017

Đáp án D

Dựa vào hình vẽ, ta thấy rằng

+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3  

Và f '(x) đổi dấu từ - → +  khi đi qua x 1 , x 3 ⇒  Hàm số có 2 điểm cực tiểu, 1 điểm cực đại

+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1  đồng biến trên x 1 ; x 2  (1) sai

+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3  (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5  (chứa khoảng (3;5)) ⇒ 2 ; 3  đúng

Vậy mệnh đề 2,3 đúng và 1, 4 sai.

7 tháng 10 2018

Đáp án là D