Cho hàm số y = f x liên tục trên R và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f f sin x = m có nghiệm thuộc khoảng 0 ; π là
A. [-1;3)
B. (-1;1)
C. (-1;3]
D. [-1;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t=2sinx+1 với
Phương trình trở thành: f(t)=m có nghiệm
Chọn đáp án A.
Chọn đáp án D.
Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)
thì phương trình f t = m có nghiệm t ∈ ( 0 ; 1 ]
Chọn đáp án B
Phương pháp
+) Đặt t=cosx, xác định khoảng giá trị của t, khi đó phương trình trở thành f(t)=m.
+) Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Cách giải
Đặt t=cosx ta có
Khi đó phương trình trở thành f(t)=m.
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Dựa vào đồ thị hàm số y=f(x) ta thấy phương trình f(t)=m có 2 nghiệm phân biệt thuộc [-1;1) khi và chỉ khi mÎ(0;2).
Đặt t = sin x ∈ ( 0 ; 1 ] , ∀ x ∈ ( 0 ; π ) Phương trình trở thành: f(t)=m(1)
Ta cần tìm m để (1) có nghiệm thuộc khoảng ( 0 ; 1 ] ⇔ - 4 ≤ m < - 2
Chọn đáp án C.
Chọn đáp án C.
Đặt t = sin x ∈ ( 0 ; 1 ] , ∀ x ∈ 0 ; π
Suy ra f sin x = f t ∈ [ - 1 ; 1 ) , ∀ t ∈ ( 0 ; 1 ]
Vậy phương trình có nghiệm x ∈ 0 ; π ⇔ - 1 < m ≤ 3