Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = a 3 . Biết thể tích khối chóp bằng a 3 3 . Khoảng cách từ điểm S đến mặt phẳng (ABC) bằng
A. a 3 9
B. a 3 3
C. 2 a 3 9
D. 2 a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D
+ Gọi H là trung điểm SB. Do tam giác SAB vuông tại A, SBC vuông tại C suy ta HA = HB = HS = HC
Suy ra H là tâm mặt cầu.
+ Gọi I là hình chiếu của H lên (ABC). Do HA = HB = HC , suy ra IA = IB = IC
Suy ra I là trung điểm AC. Gọi P là trung điểm BC, do tam giác ABC vuông cân, suy ra
Áp dụng hệ thức
\
Tam giác SBC cân hay đều em nhỉ?
Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)
Đáp án C
B C = A B . tan 30 0 = a 3 3 ⇒ A C = a 2 3 + a 2 = 2 3 3 a V = 1 3 . S A . 1 2 . A B . B C = 1 3 . S A . 1 2 . a . a 3 3 = a 3 3 36 ⇒ S A = a 2 S B = a 2 4 + a 2 = a 5 2 V = 1 3 . d ( A ; S B C ) . 1 2 . S B . B C = 1 3 . d . 1 2 . a 5 2 . a 3 3 = a 3 3 36 ⇒ d = a 5 5
Đáp án B
HDG:
Dễ dàng chứng minh ∆ S B C vuông tại B
Ta có (SAB) ⊥ (SBC) theo giao tuyến SB. Kẻ
Đáp án D