Giải phương trình sau: tan x - 15 ° = 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(tan\left(x+\dfrac{\pi}{3}\right)=t\)
\(\Rightarrow t^2+\left(\sqrt{3}-1\right)t-\sqrt{3}=0\)
\(\Leftrightarrow t\left(t-1\right)+\sqrt{3}\left(t-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan\left(x+\dfrac{\pi}{3}\right)=1\\tan\left(x+\dfrac{\pi}{3}\right)=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=-\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\)
Đkxđ: \(x\ge3\)
pt đã cho \(\Leftrightarrow x^2-x-12+3\left(\sqrt{x-3}-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)+3.\dfrac{x-4}{\sqrt{x-3}+1}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3+\dfrac{3}{\sqrt{x-3}+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x+3+\dfrac{3}{\sqrt{x-3}+1}=0\left(vôlí\right)\end{matrix}\right.\)
Vậy pt đã cho có nghiệm duy nhất \(x=4\)
Bài 5. a) Vì = tan 300 nên
tan (x - 150) = ⇔ tan (x - 150) = tan 300
⇔ x - 150 = 300 + k1800 ⇔ x = 450 + k1800 , (k ∈ Z).
b) Vì -√3 = cot() nên
cot (3x - 1) = -√3 ⇔ cot (3x - 1) = cot()
⇔ 3x - 1 = + kπ ⇔ x =
c) Đặt t = tan x thì cos2x = , phương trình đã cho trở thành
. t = 0 ⇔ t ∈ {0 ; 1 ; -1} .
Vì vậy phương trình đã cho tương đương với
d) sin 3x . cot x = 0 ⇔ .
Với điều kiện sinx # 0, phương trình tương đương với
sin 3x . cot x = 0 ⇔
Với cos x = 0 ⇔ x = + kπ, k ∈ Z thì sin2x = 1 – cos2x = 1 – 0 = 1 => sinx # 0, điều kiện được thỏa mãn.
Với sin 3x = 0 ⇔ 3x = kπ ⇔ x = , (k ∈ Z). Ta còn phải tìm các k nguyên để x = vi phạm điều kiện (để loại bỏ), tức là phải tìm k nguyên sao cho sin = 0, giải phương trình này (với ẩn k nguyên), ta có
sin = 0 ⇔ = lπ, (l ∈ Z) ⇔ k = 3l ⇔ k : 3.
Do đó phương trình đã cho có nghiệm là x = + kπ, (k ∈ Z) và x = (với k nguyên không chia hết cho 3).
Pt \(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(-cot\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)=\(tan\left(\pi-3x\right)\)
\(\Leftrightarrow\)\(x+\dfrac{\pi}{3}=\pi-3x+k\pi\)
\(\Leftrightarrow\)4\(x\)=\(\dfrac{4}{3}\pi+k\pi\)
\(\Leftrightarrow\) \(x=\) \(\dfrac{\pi}{3}+k\dfrac{\pi}{4}\)(\(k\in Z\))
\(pt\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=-cot\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=cot\left(-\dfrac{\pi}{2}+3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\pi-3x\right)\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=\pi-3x+k\pi\)
\(\Leftrightarrow4x=\dfrac{2\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{4}\)
a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(2\cos x = - \sqrt 2 \;\; \Leftrightarrow \cos x = - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x = - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)
c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)
\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)
Dat \(\sqrt[3]{12-x}=a;\)\(\sqrt[3]{x+15}=b\)
Khi do ta co: \(\hept{\begin{cases}a+b=3\\a^3+b^3=27\end{cases}}\) <=> \(\hept{\begin{cases}a=3-b\\a^3+b^3=27\end{cases}}\) <=> \(\hept{\begin{cases}a=3-b\\\left(3-b\right)^3+b^3=27\end{cases}}\)
<=> \(\hept{\begin{cases}a=3-b\\9\left(b^2-3b+3\right)=27\end{cases}}\) <=> \(\hept{\begin{cases}a=3-b\\b^2-3b+3=3\end{cases}}\) <=> \(\hept{\begin{cases}a=3-b\\b\left(b-3\right)=0\end{cases}}\)
Xet: \(b\left(b-3\right)=0\)
<=> \(\orbr{\begin{cases}b=0\\b=3\end{cases}}\)
Đến đây tự giải
(Điều kiện : x – 15º ≠ 90º + k.180º với ∀ k ∈ Z)
⇔ x – 15º = 30º + k180º , k ∈ Z
⇔ x = 45º + k.180º, k ∈ Z
Vậy phương trình có họ nghiệm x = 45º + k.180º (k ∈ Z).