tìm x∊z thỏa mản 3(2x-a)<3(4x-3)+16 và 4(1+x)< 3x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\) va \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\cdot\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)
\(=\frac{2\left(3x-2\right)}{10}\ge\frac{5x}{10}+\frac{8}{10}\)
\(\Rightarrow2\left(3x-2\right)\ge5x+8\)
\(=6x-4\ge5x+8\)
\(=6x-5x\ge8+4\)
\(x\ge12\)(1)
\(\cdot1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(=\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Rightarrow12-2\left(2x-5\right)>3\left(3-x\right)\)
\(=12-4x+10>9-3x\)
\(=-4x+3x>9-12-10\)
\(=-x>-13\)
\(=x< 13\) (2)
Từ (1) và (2) => \(13>x\ge12\)=> x=12
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3
a) (x+2)(x-3)<0
Để (x+2)(x-3)<0 <=> x+2 và x-3 trái dấu
Mà x+2 > x-3 => x+2> 0 và x-3 <0
=> x>-2 và x < 3
Vậy -2 < x < 3
b )4(3x+1)(5-2x)>0
Vì 4 > 0 , Để 4(3x+1)(5-2x)>0 <=> 3x+1 > 0 và 5-2x>0
<=> x>-1/3 và x < 5/2
Vậy -1/3 < x < 5/2