Cho hàm số y = x 3 - 3 x + m 2 . Tổng tất cả các giá trị của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn - 1 ; 1 bằng 1 là
A. 0
B. -4
C. 0
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Xét hàm số f(x) = x 3 - 3 x + m .
Để GTNN của hàm số y = x 3 - 3 x + m 2 trên đoạn [-1;1] bằng 1 thì hoặc
Ta có
=> f(x) nghịch biến trên [-1;1]
Suy ra và
Trường hợp 1:
Trường hợp 2:
Vậy tổng các giá trị của tham số m là 0.
+ Xét hàm số f(x) =x2- 2x trên đoạn [ -1; 2],
+ ta có đạo hàm f’(x) = 2( x-1) và f’( x) =0 khi x= 1
Vậy:
TH1: Với m a x [ - 1 , 2 ] = | m - 1 | ,
ta có m - 1 ≥ m + 3 | m - 1 | ≥ | m | | m - 1 | = 5
↔ | m - 1 | ≥ m + 3 | m - 1 | ≥ | m | m = - 4 ∨ m = 6 ↔ m = - 4
TH2: Với
m a x [ - 1 , 2 ] y = | m + 3 | ↔ | m + 3 | ≥ | m - 1 | | m + 3 | ≥ | m | | m + 3 | ≥ 5
↔ | m + 3 | ≥ | | m - 1 | | m + 3 | ≥ | m | m = 2 ∨ m = - 8 ↔ m = 2
TH3: Với
m a x [ - 1 , 2 ] y = | m | ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | | m | = 5 ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | m = 5 ∨ m = - 5
( vô nghiệm)
Chọn D.
+ Đạo hàm f'(x) = 2 - m x 2 ( x + 1 ) x ( x + 1 )
f'(x) = 0 ⇒ x = 2 m ↔ x = m 2 4 ∈ [ 0 ; 4 ] , ∀ m > 1
+ Lập bảng biến thiên, ta kết luận được
m a x [ 0 ; 4 ] f ( x ) = f ( 4 m 2 ) = m 2 + 4
+ Vậy ta cần có m 2 + 4 < 3
↔ m < 5 → m > 1 m ∈ ( 1 ; 5 )
Chọn C.
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)
\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)
Chọn C