Biết rằng lim x → + ∞ ( x 3 + 1 x 2 - 2 + a x + b ) = 10 . Tính tổng a +b
A. 6
B. 7
C. 8
D. 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(a+1\right)x^3+bx^2-2ax-2b+1}{x^2-2}\right)\)
Giới hạn hữu hạn khi \(a+1=0\Rightarrow a=-1\)
\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{bx^2+2x-2b+1}{x^2-2}\right)=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{b+\dfrac{2}{x}-\dfrac{2b-1}{x^2}}{1-\dfrac{2}{x^2}}\right)=b\)
\(\Rightarrow b=10\)
Lời giải:\(\lim\limits_{x\to +\infty}\left(\frac{x^3+1}{x^2-2}+ax+b\right)=\lim\limits_{x\to +\infty}\frac{x^3(a+1)+bx^2-2ax+(1-2b)}{x^2-2}\)
Nếu $a\neq -1$ thì bậc của tử lớn hơn bậc của mẫu nên giới hạn tiến vô cùng chứ không phải hữu hạn $(10)$
Do đó $a=-1$
Khi đó: \(\lim\limits_{x\to +\infty}(\frac{x^3+1}{x^2-2}+ax+b)=\lim\limits_{x\to +\infty}\frac{bx^2+2x+(1-2b)}{x^2-2}=\lim\limits_{x\to +\infty}\frac{b+\frac{2}{x}+\frac{1-2b}{x^2}}{1-\frac{2}{x^2}}=b\)
Do đó $b=10$.
Giới hạn đã cho hữu hạn nên \(ax^2+\left(2b-3\right)x+5=0\) có nghiệm \(x=2\)
\(\Rightarrow4a+2\left(2b-3\right)+5=0\Rightarrow4a+4b-1=0\)
\(\Rightarrow2b=\dfrac{1-4a}{2}\)
\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{ax^2+\left(\dfrac{1-4a}{2}-3\right)x+5}{\left(x-2\right)\left(x+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{2ax^2-4ax-5x+10}{2\left(x-2\right)\left(x+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(2ax-5\right)}{2\left(x-2\right)\left(x+3\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2ax-5}{2\left(x+3\right)}=\dfrac{4a-5}{10}=10\Rightarrow a=\dfrac{105}{4}\)
\(\Rightarrow b=\dfrac{1-4a}{4}=-26\Rightarrow a+2b=-\dfrac{103}{4}\)
\(\Rightarrow1+a+b=0\Leftrightarrow b=-a-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+ax-a-1}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x+1+a\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{x+1+a}{x+1}=\dfrac{1+1+a}{1+1}=\dfrac{1}{2}\)
\(\Rightarrow a=-1\Rightarrow b=0\)
\(\sqrt{a+12}-\sqrt[3]{81+63-19}=0\Rightarrow a=13\)
Khi đó
\(\dfrac{\sqrt{13x^2+4x+8}-\sqrt[3]{81x^2+63x-19}}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{\sqrt[]{13x^2+4x+8}-\left(3x+2\right)+\left(3x+2-\sqrt[3]{81x^2+83x-19}\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{\dfrac{4\left(x-1\right)^2}{\sqrt[]{13x^2+4x+8}+\left(3x+2\right)}+\dfrac{27\left(x-1\right)^2\left(x+1\right)}{\left(3x+2\right)^2+\left(3x+2\right)\sqrt[3]{81x^2+63x-19}+\sqrt[3]{\left(81x^2+63x-19\right)^2}}}{\left(x-1\right)^2\left(x+1\right)}\)
a/ \(\lim\limits_{x\rightarrow2}\dfrac{2+3}{4+2+4}=\dfrac{5}{10}=\dfrac{1}{2}\)
b/ \(\lim\limits_{x\rightarrow-3}\dfrac{\left(x+2\right)\left(x+3\right)}{x\left(x+3\right)}=\lim\limits_{x\rightarrow-3}\dfrac{x+2}{x}=\dfrac{-3+2}{-3}=\dfrac{1}{3}\)
Câu 2:
a: \(x^{10}=1^x\)
\(\Leftrightarrow x^{10}=1\)
=>x=1 hoặc x=-1
b: \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Leftrightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-15\right)^3\cdot\left(2x-16\right)\left(2x-14\right)=0\)
hay \(x\in\left\{\dfrac{15}{2};8;7\right\}\)
c: \(x^{10}=x\)
\(\Leftrightarrow x\left(x^9-1\right)=0\)
=>x=0 hoặc x=1
\(a+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}=0\) có nghiệm \(x=1\)
\(\Rightarrow a+\dfrac{2}{\sqrt{1}}-\dfrac{6}{\sqrt{1}}=0\Rightarrow a=4\)
\(4+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}=3\left(2-\dfrac{x+1}{\sqrt{x}}\right)+\left(\dfrac{x+1}{\sqrt{x^2-x+1}}-2\right)\)
\(=-3\left(\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x+1+2\sqrt{x}\right)}\right)+\dfrac{-3\left(x-1\right)^2}{\sqrt{x^2-x+1}\left(x+1-2\sqrt{x^2-x+1}\right)}\)
Rút gọn với \(\left(x-1\right)^2\) bên ngoài rồi thay dố là được
1: \(A=\dfrac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)
\(=\dfrac{x^2-xa-x+a}{\left(x-a\right)\left(x^2+ax+a^2\right)}\)
\(=\dfrac{\left(x-a\right)\left(x-1\right)}{\left(x-a\right)\left(x^2+ax+a^2\right)}=\dfrac{x-1}{x^2+ax+a^2}\)
\(lim_{x->a}A=lim_{x->a}\left(\dfrac{x-1}{x^2+ax+a^2}\right)\)
\(=\dfrac{a-1}{a^2+a^2+a^2}=\dfrac{a-1}{3a^2}\)
2: \(B=\dfrac{1}{1-x}-\dfrac{3}{1-x^3}\)
\(=\dfrac{-1}{x-1}+\dfrac{3}{x^3-1}\)
\(=\dfrac{-x^2-x-1+3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-x-2}{x^2+x+1}\)
\(lim_{x->1}\left(B\right)=\dfrac{-1-2}{1^2+1+1}=\dfrac{-3}{3}=-1\)
3: \(C=\dfrac{\left(x+h\right)^3-x^3}{h}=\dfrac{\left(x+h-x\right)\left(x^2+2xh+h^2+x^2+hx+x^2\right)}{h}\)
\(=3x^2+3hx\)
\(lim_{h->0}\left(C\right)=3x^2+3\cdot0\cdot x=3x^2\)
Đáp án D