Cho hàm số y = x + m x + 1 (m là tham số thực) thỏa mãn m i n 1 ; 2 y + m a x 1 ; 2 y = 16 3 . Mệnh đề nào dưới đây đúng?
A. 2 < m ≤ 4
B. 0 < m ≤ 2
C. m ≤ 0
D. m > 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có: y ' = − 1 − m x − 1 2
· Trường hợp 1: nếu y ' > 0 ⇒ m < − 1 , lúc này hàm số đồng biến
⇒ min 2 ; 4 y = y 2 = 2 + m 2 − 1 = 3 ⇒ m = 1 (mâu thuẫn với m < -1) => loại
· Trường hợp 2: nếu y ' < 0 ⇒ m > − 1 , lúc này hàm số nghịch biến
⇒ min 2 ; 4 y = y 4 = 4 + m 4 − 1 = 3 ⇒ m = 5 (thỏa mãn với m > -1) => chọn
Đối chiếu 4 đáp án thì có đáp án C là thỏa mãn.
Đáp án C
Phương pháp: Hàm số bậc nhất trên bậc nhất y = a x + b c x + d a d - b c ≠ 0 luôn đơn điệu trên từng khoảng xác định của nó.
TH1: Hàm số đồng biến trên [2;4] => m a x 2 ; 4 y = y ( 4 )
TH2: Hàm số nghịch biến trên [2;4] => m a x 2 ; 4 y = y ( 2 )
Cách giải: Tập xác định: D = R\{1}
Ta có:
TH1:
=>Hàm số đồng biến trên
TH2:
=> Hàm số nghịch biến trên
Vậy m = –2
Dựa vào các đáp án ta thấy chỉ có đáp án C thỏa mãn
Chọn B
Cách giải: Ta có:
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0
Chọn đáp án D