Cho số phức z thỏa mãn z = 1 .
Tìm giá trị lớn nhất của biểu thức T = z + 1 + 2 z - 1
A. maxT= 2 5
B. maxT= 3 5
C. maxT= 2 10
D. maxT= 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập hợp các điểm z thỏa mãn điều kiện z - 1 = 2 là đường tròn (C) tâm I(1;0) bán kính R = 2
Gọi M là điểm biểu diễn cho số phức z, A(0,-1) là điểm biểu diễn cho số phức -i, B(2;1)là điểm biểu diễn cho số phức 2+i
Đáp án D
Đáp án D
Phương pháp: Đưa biểu thức T về dạng biểu thức vector bằng cách tìm các vecto biểu diễn cho các số phức.
Cách giải:
Tập hợp các điểm z thỏa mãn điều kiện là đường tròn (C) tâm I(1;0) bán kính R= 2
Gọi M là điểm biểu diễn cho số phức z, A(0;-1) là điểm biểu diễn cho số phức -i, B(2;1) là điểm biểu diễn cho số phức 2+i
Dễ thấy A,B ∈ C và
AB là đường kính của đường tròn (C)
vuông tại M
Đặt
Xét hàm số trên ta có:
Vậy maxT=4
Đáp án A
Phương pháp giải:
Gọi số phức, áp dụng bất đẳng thức Bunhiacopxki để tìm giá trị lớn nhất
Lời giải:
Cách 1. Gọi
Và A(-1;0), B(1;0)
Ta có
⇒ M thuộc đường tròn đường kính AB
Khi đó, theo Bunhiacopxki, ta có
Vậy giá trị lớn nhất của biểu thức maxT= 2 5
Cách 2. Đặt