K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

18 tháng 8 2023

a)

Điều kiện để $1-2x > 0$ (đối số dương) là:

$1 > 2x$

$x < \frac{1}{2}$

Vậy, để biểu thức $log_3(1-2x)$ có nghĩa, giá trị của $x$ phải nhỏ hơn $\frac{1}{2}$.

18 tháng 8 2023

b)

Điều kiện để $x+1 \neq 0$ và $x+1 \neq 1$ là:

$x \neq -1$ và $x \neq 0$

Vậy, để biểu thức $log_{x+1}5$ có nghĩa, giá trị của $x$ không được bằng -1 hoặc 0.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với \(x = 1\) thì \(y = {\log _2}1 = 0\)

Với \(x = 2\) thì \(y = {\log _2}2 = 1\)

Với \(x = 4\) thì \(y = {\log _2}4 = 2\)

b) Biểu thức \(y = {\log _2}x\) có nghĩa khi x > 0.

\(A=log_2\left(x^3-x\right)-log_2\left(x+1\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x^3-x}{x+1}\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{x+1}\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)=log_2x\)

\(2log_2y=2+\dfrac{1}{2}log_2x\)

=>\(log_2y^2=log_22^2+log_2x^{\dfrac{1}{2}}\)

=>\(log_2y^2=log_2\left(2^2\cdot x^{\dfrac{1}{2}}\right)\)

=>\(y^2=4\cdot x^{\dfrac{1}{2}}=4\sqrt{x}\)

27 tháng 8 2018

Đáp án B

Ta có log(x + 2y) = log x + log y

<=> log 2 (x+2y) = log 2xy

<=> 2 (x+2y) = 2xy (*).

Đ ặ t   a = x > 0 b = 2 y > 0 , khi đó

* ⇔ 2 a + b = a b

và  P = a 2 1 + b + b 2 1 + a ≥ a + b 2 a + b + 2

Lại có  a b ≤ a + b 2 4 ⇒ 2 a + b ≤ a + b 2 4 ⇔ a + b ≥ 8 .

Đặt t = a + b, do đó

P ≥ f t = t 2 t + 2 .

X é t   h à m   s ố   f t = t 2 t + 2 t r ê n   [ 8 ; + ∞ )

c ó   f ' t = t 2 + 2 t t + 2 2 > 0 ; ∀ ≥ 8

Suy ra f(t) là hàm số đồng biến trên  [ 8 ; + ∞ )

Vậy gía trị nhỏ nhất của biểu thức P là  32 5 .

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

15 tháng 3 2018

Chọn đáp án B.

18 tháng 8 2023

a) \(log_69+log_64=log_636=2\)

b) \(log_52-log_550=log_5\left(2:50\right)=-2\)

c) \(log_3\sqrt{5}-\dfrac{1}{2}log_550=-1,0479\)