Có bao nhiêu số hạng trong khai triển nhị thức ( 2 x - 3 ) 2018 thành đa thức.
A. 2018
B. 2019
C. 2020
D. 2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)
Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1
Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)
Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)
Chọn C
Khai triển ( x + 2 ) n + 5 , ( n ∈ ℕ ) có tất cả 2019 số hạng nên (n+5) + 1 = 2019 => n = 2013
Hệ số lớn nhất sẽ tương ứng với số hạng đứng chính giữa
=>Hệ số lớn nhất là \(C^{51}_{101}\)
Trong khai triển nhị thức a + b n thì số các số hạng là n+1 nên trong khai triển 2 x - 3 2018 có 2019 số hạng.
Đáp án C
Chọn B
Vậy khai triển trên có 2019 số hạng.