Cho hàm số y = x 4 - 2 x 2 có đồ thị (C). Có bao nhiêu đường thẳng d có đúng ba điểm chung với đồ thị (C) và các điểm chung có hoành độ x 1 , x 2 , x 3 thỏa mãn x 1 3 + x 2 3 + x 3 3 = - 1 ?
A. 0
B. 1
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Dựa vào đáp án, ta thấy rằng
(1) Đường thẳng f x = 0 ⇔ 3 2 x - 2 . 3 x = 0 ⇔ 3 x = 2 ⇔ x = log 3 2 ⇒ 1 đúng.
(2) Bất phương trình f x ≥ - 1 ⇔ 3 2 x - 2 . 3 x + 1 ≥ 0 ⇔ 3 x - 1 2 ≥ 0 , ∀ x ∈ ℝ . Nên f x ≥ - 1 có vô số nghiệm ⇒ 2 sai.
(3) Bất phương trình f x ≥ 0 ⇔ 3 x 2 - 2 . 3 x ≥ 0 ⇔ 3 x ≥ 2 ⇔ x ≥ log 3 2 ⇒ 3 sai.
(4) Đường thẳng f(x) = 0 chỉ có 1 nghiệm duy nhất ⇒ 4 sai
+ Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.
Dựa vào đồ thị hàm số y= f’( x), ta thấy đồ thị hàm số y= f’ (x) là parabol có trục đối xứng là trục tung nên b=0
Đồ thị hàm số y= f’( x) đi qua 2 điểm (1;0) và (0; -3) thay vào f’(x) ; ta tìm được: a=1 và c= -3.
Suy ra: f’(x) = 3x2-3b và f(x) = x3-3x+d.
+ Do (C) tiếp xúc với đường thẳng y= 4 tại điểm có hoành độ âm nên ta có:
f’(x) =0 khi và chỉ khi x= -1;x= 1( loại)
Như vậy (C) đi qua điểm (-1; 4) ta tìm được d= 2
Khi đó; f( x) =x3-3x+2.
chọn A.
a:Thay x=-2 và y=0 vào (d), ta được:
-2(m-1)+4=0
=>-2(m-1)=-4
=>m-1=2
=>m=3
b: (d): y=2x+4
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Lời giải:
a) $y_M=\frac{-x_M^2}{2}=\frac{-(-3)^2}{2}=\frac{-9}{2}$
Đường thẳng $OM$ có dạng: $y=ax$
$\Rightarrow y_M=ax_M\Leftrightarrow \frac{-9}{2}=a.(-3)$
$\Rightarrow a=\frac{3}{2}$
Vậy ĐT $OM$ là: $y=\frac{3}{2}x$
b) Gọi PTĐT $CE$ có dạng $y=ax+b$
PT hoành độ giao điểm giữa $(P)$ và $CE$ là:
$\frac{-x^2}{2}-ax-b=0$
$\Leftrightarrow x^2+2ax+2b=0(*)$
$(P)$ và $CE$ cắt nhau tại 2 điểm có hoành độ $-1;2$ nghĩa là PT $(*)$ nhân $x=-1$ và $x=2$ là nghiệm
\(\Rightarrow \left\{\begin{matrix} 1-2a+2b=0\\ 4+4a+2b=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-1}{2}\\ b=-1\end{matrix}\right.\)
Vậy PTĐT $CE$ có dạng $y=-\frac{1}{2}x-1$
a: Thay x=-1 và y=2 vào (d), ta được:
\(-\left(m-2\right)+n=2\)
=>-m+2+n=2
=>-m+n=0
=>m-n=0(1)
Thay x=3 và y=-4 vào (d), ta được:
\(3\left(m-2\right)+n=-4\)
=>3m-6+n=-4
=>3m+n=2(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)
b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:
\(0\left(m-2\right)+n=1-\sqrt{2}\)
=>\(n=1-\sqrt{2}\)
Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)
Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:
\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)
=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)
=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)
=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)
c: 2y+x-3=0
=>2y=-x+3
=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)
Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì
\(-\dfrac{1}{2}\left(m-2\right)=-1\)
=>m-2=2
=>m=4
Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)
Thay x=1 và y=3 vào y=2x+n, ta được:
\(n+2\cdot1=3\)
=>n+2=3
=>n=1
d: 3x+2y=1
=>\(2y=-3x+1\)
=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)
Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì
\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)
Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)
Thay x=1 và y=2 vào (d), ta được:
\(n-\dfrac{3}{2}=2\)
=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)
Giả sử đường thẳng cần tìm có dạng y=kx+m. Phương trình hoành độ giao điểm:
x 4 - 2 x 2 = k x + m ⇔ x 4 - 2 x 2 - k x - m = 0
Theo giả thiết đường thẳng d có đúng ba điểm chung với đồ thị (C) và các điểm chung có hoành độ x 1 , x 2 , x 3 nên x 4 - 2 x 2 - k x - m = x - x 1 2 x - x 2 x - x 3 . Do đó d là tiếp tuyến của (C) có hoành độ
Phương trình hoành độ giao điểm lúc này là:
Yêu cầu bài toán tương đương với (1) có hai nghiệm phân biệt x 2 , x 3 # x 1
và x 1 3 + x 2 3 + x 3 3 = - 1
Vì vậy
Vì vậy có duy nhất một đường thẳng thoả mãn là tiếp tuyến tại điểm có hoành độ x = - 11 + 65 22 .
Chọn đáp án B.
*Chú ý dạng toán này thuộc bài học tiếp tuyến cắt đồ thị hàm số.