Cho khối chóp S . A B C D có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi M' , N', P', Q lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng A B C D . Tính tỉ số S M S A để thể tích khối đa diện M N P Q . M ' N ' P ' Q ' đạt giá trị lớn nhất.
A. 2 3
B. 1 2
C. 1 3
D. 3 4
Đáp án A
Đặt S M S A = x , vì mặt phẳng M N P Q song song với đáy
Suy ra M N A B = N P B C = P Q C D = M Q A D = x ( định lí Thalet).
Và d M ; A B C D d S ; A B C D = M A S A = 1 − S M S A = 1 − x ⇒ M M ' = 1 − x × h .
Mặt khác d t M N P Q = x 2 × d t A B C D nên thể tích khối đa diện
M N P Q . M ' N ' P ' Q ' là V = M M ' x d t M N P Q
= 1 − x x 2 × h × d t A B C D = 3 x 2 − x 3 × V S . A B C D .
Khảo sát hàm số f x = x 2 − x 3 → m ax 0 ; 1 f x = 4 27 .
Dấu “=” xảy ra ⇔ x = 2 3 .
Vậy S M S A = 2 3 thì thể tích khối hộp M N P Q . M ' N ' P ' Q ' lớn nhất.