Đường cao BD của tam giác nhọn ABC bằng 6, đoạn thẳng AD bằng 5. Tính diện tích tam giác ABD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tinh ab bang pitago .su dung tam giac dong dang abd va abc suy ra ab2 =ad*ac the so roi tinh
a) Vì tam giác ABD vuông tại D nên ta có:
SΔABD=12.BD.AD=12.6.5=15 (đvdt)
b) Ta có: tgˆC=BD/DC
Theo giả thiết: tgˆC=3/4
Suy ra: BD/DC=34⇒DC=4/3BD=4.6/3=8
Suy ra: AC=AD+DC=5+8=13 b a d c 5 6
a) Vì tam giác ABD vuông tại D nên ta có:
SΔABD=12.BD.AD=12.6.5=15(đvdt)
b) Ta có: tgˆC=BD/DCt
Theo giả thiết: tgˆC=3/4
Suy ra: BD/DC=3/4⇒DC=4/3 BD=4.6/3=8 A B C 6 5
Suy ra: AC=AD+DC=5+8=13.
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
b) Ta có: ΔADB\(\sim\)ΔAEC(cmt)
nên \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔAED và ΔACB có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔAED\(\sim\)ΔACB(c-g-c)
a: Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{14}\)
=>\(\dfrac{AD}{6}=\dfrac{CD}{7}\)
mà AD+CD=AC=9cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{9}{13}\)
=>\(AD=\dfrac{9}{13}\cdot6=\dfrac{54}{13}\left(cm\right);CD=\dfrac{9}{13}\cdot7=\dfrac{63}{13}\left(cm\right)\)
b: Sửa đề: b) Tính tỉ số diện tích của tam giác ABD và tam giác BDC
Vì \(\dfrac{AD}{6}=\dfrac{CD}{7}\)
nên \(\dfrac{AD}{CD}=\dfrac{6}{7}\)
=>\(\dfrac{S_{ABD}}{S_{CBD}}=\dfrac{6}{7}\)
=>\(S_{ABD}=\dfrac{6}{7}\cdot S_{CBD}\)