Cho khối lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình vuông. Hình chiếu vuông góc của A' trên mặt phẳng (ABCD)là trung điểm của AB, góc giữa mặt phẳng (A'CD) và mặt phẳng (ABCD) là 60 O Thể tích của khối chóp B'.ABCD là Tính độ dài đoạn thẳng AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có tan 60 ° = A ' H H P ⇒ A ' H = H P 3 .
Lại có 8 a 3 3 3 = 1 3 A ' H . H P 2 ⇒ H P 3 3 = 8 a 3 3 ⇒ H P = 2 a ⇒ A C = 2 a 2 .
Đáp án D
Gọi H là trung điểm của BC, kẻ H K ⊥ C ' D ' K ∈ C ' D '
Suy ra B H ⊥ A ' B ' C ' D ' ⇒ A C ' D ' ; A ' B ' C ' D ' ^ = B K H ^
Tam giác A’C’D’ đều cạnh 2 a ⇒ H K = d A ' ; C ' D ' = a 3
Tam giác BHK vuông tại H ⇒ B H = tan 60 ∘ x H K = 3 a
Diện tích hình thoi A’B’C’D’ là S A ' B ' C ' D ' = 2 a 2 3 .
Vậy thể tích khối lăng trụ ABC.A’B’C’D’ là V = B H . S A ' B ' C ' D ' = 3 a .2 a 2 3 = 6 3 a 3
Đáp án C.
Kẻ A H ⊥ B D H ∈ B D mà
A ' O ⊥ A B C D ⇒ A ' O ⊥ A H ⇒ A H ⊥ A ' B D .
Ta có d B ' , A ' B D = d A , A ' B D = A H = A B . A D A B 2 + A D 2 = a 3 2
Gọi O là giao điểm của AC và BD \(\Rightarrow A_1O\perp\left(ABCD\right)\)
Gọi E là trung điểm của AD \(\Rightarrow\begin{cases}OE\perp AD\\A_1E\perp AD\end{cases}\)
Suy ra \(\widehat{A_1EO}\) là góc giữa 2 mặt phẳng \(\left(ADD_1A_1\right)\) và \(\left(ABCD\right)\) \(\Rightarrow\widehat{A_1EO}=60^o\)
Suy ra : \(A_1O=OE.\tan\widehat{A_1EO}=\frac{AB}{2}\tan\widehat{A_1EO}=\frac{a\sqrt{3}}{2}\)
Diện tích đáy \(S_{ABCD}=AB.AD=a^2\sqrt{3}\)
Thể tích \(V_{ABCD.A'B'C'D'}=S_{ABCD}.A_1O=\frac{3a^2}{2}\)
Ta có : \(B_1C||A_1D\)\(\Rightarrow B_1C||\left(A_1CD\right)\)
\(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=d\left(C,\left(A_1BD\right)\right)=CH\)
\(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=CH=\frac{CD.CB}{\sqrt{CD^2+CB^2}}=\frac{a\sqrt{3}}{2}\)