cho ΔABC có M là trung điểm của BC. Trên tia đối của MA lấy điểm N sao cho MA=MN.
CMR: a) AC=BN
b) AB//NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆AMC và ∆NMB có:
+ AM = NM (gt).
+ Góc AMC = Góc NMB (đối đỉnh).
+ CM = BM (M là trung điểm của BC).
=> ∆AMC = ∆NMB (c - g - c).
b) ∆AMC = ∆NMB (cmt).
=> Góc CAM = Góc BNM (cặp góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
=> AC // BN (dhnb).
c) ∆AMC = ∆NMB (cmt).
=> AC = NB (cặp cạnh tương ứng).
Xét tứ giác ACNB có:
+ AC = BN (cmt).
+ AC // BN (cmt).
=> Tứ giác ACNB là hình bình hành (dhnb).
=> AB // NC (tính chất hình bình hành).
a: Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
Do đó: ABDC là hình bình hành
=>BD//AC
c: Xét tứ giác ACBE có
N là trung điểm chung của AB và CE
Do đó: ACBE là hình bình hành
=>BE//AC và BE=AC
ACDB là hình bình hành
=>AC//BD và AC=BD
AC//BD
AC//BE
BD cắt BE tại B
Do đó: D,B,E thẳng hàng
mà BD=BE(=AC)
nên B là trung điểm của DE
b: Xét tứ giác ABNC có
M là trung điểm của AN
M là trung điểm của BC
Do đó: ABNC là hình bình hành
Suy ra: AC//BN
Cậu tự hình nhé
a.ΔAMCΔAMC và ΔNMBΔNMB có:
AM= NM (gt)
ˆAMCAMC^ =ˆNMBNMB^ (2 góc đối đỉnh)
CM= MB (gt)
⇒ΔAMC=ΔNMB(c.g.c)⇒ΔAMC=ΔNMB(c.g.c)
⇒AC=BN⇒AC=BN (đpcm)
a.ΔAMC và ΔNMB có:
AM= NM (gt)
AMC =NMB (2 góc đối đỉnh)
CM= MB (gt)
⇒ΔAMC=ΔNMB(c.g.c)
⇒AC=BN (đpcm)
b.ΔAMB và ΔNMC có:
AM= NM (gt)
AMB= NMC (2 góc đối đỉnh)
CM= BM (gt)
⇒ΔAMB=ΔNMC(c.g.c)
BAM=CNM^ (hai góc tương ứng)
Hai góc đồng vị BAM vàCNM bằng nhau nên AB//NC (đpcm)
a)
Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có
MB=MC(M là trung điểm của BC)
AM=DM(gt)
Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)
⇒\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔABM và ΔICM có
MA=MI
\(\widehat{AMB}=\widehat{IMC}\)
MB=MC
Do đó: ΔABM=ΔICM
b: ΔABM=ΔICM
=>\(\widehat{ABM}=\widehat{ICM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CI
c: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC
\(\widehat{BMH}=\widehat{CMK}\)
Do đó: ΔBHM=ΔCKM
=>BH=CK
d: BH\(\perp\)AI
CK\(\perp\)AI
Do đó: BH//CK
=>BE//CF
Xét tứ giác BECF có
BE//CF
CE//BF
Do đó: BECF là hình bình hành
=>BC cắt EF tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của EF
=>E,M,F thẳng hàng
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath
a: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AB=NC và ΔCAN vuông tại C
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
a) Xét tam giác MAB và tam giác MCN có
MB =MC ( M là tđ BC)
AM =AN (gt)
AMB = CMD ( 2 góc đối đỉnh )
=> 2 tam giác = nhau (c-g-c)
=> AB =NC (2 cạnh tương ứng)
=> góc BAN = góc ANC (2 góc tương ứng)
mà 2 góc ở vị trí so le trong => AB // NC
=> A + C = 180 ( 2 góc trong cùng phía bù nhau)
=> 90 + c = 180 => góc C=90
xét tam giác ACN có góc C =90 => tma giác ACN vuông tại C
b) Xét tam giác ABC vuông tại A có M là trung điểm BC => AM là trung tuyến => AM = BM = CM =1/2 BC(tc)
c) ta xét tam giác BAN có : AM =MN => M là trung điểm của AN => BM là trung tuyến của AN
mà BM = AM (cmt ) => BM=AM=MN=1/2AN
=> tam giác ABN vuông tại B => AB vuông góc với BN
mà MK vuông góc với BN (gt)=> AB // MK ( từ vuông góc -> //)
mà AB vuông góc AC => MK vuông góc với AC (từ vuông góc -> //)
ta lại có MI cũng vuông góc với AC (gt)
=> M,K,I thẳng hàng (tiên đề ơ clits)
Cậu tự vẽ hình nhé
a . ΔAMCΔAMC và ΔNMBΔNMB có:
AM= NM (gt)
ˆAMCAMC^ =ˆNMBNMB^ (2 góc đối đỉnh)
CM= MB (gt)
⇒ΔAMC=ΔNMB(c.g.c)⇒ΔAMC=ΔNMB(c.g.c)
⇒AC=BN⇒AC=BN (đpcm)
b . ΔAMB và ΔNMC có:
AM= NM (gt)
ˆAMBAMB^= ˆNMCNMC^ (2 góc đối đỉnh)
CM= BM (gt)
⇒ΔAMB=ΔNMC(c.g.c)
⇒\(\widehat{BAM}\)= ˆCNMCNM^ (hai góc tương ứng)
Hai góc đồng vị ˆBAMBAM^ và ˆCNMCNM^ bằng nhau nên AB//NC (đpcm)