K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

Đáp án D

Ta có: B C ⊥ A A ' B C ⊥ A H

Do đó:

Mặt khác, tam giác A’BC vuông cân tại A’

nên A ' H = 1 2 B C = 3 a 2

Ta có:

⇒ φ = 60 o

18 tháng 4 2017

Chọn D.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

+) Ta có :

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

⇒ Suy ra : A đúng.

+) Ta có : Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

⇒ Suy ra : C đúng.

+) Mặt khác : AH ⊥ CD nên:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

⇒ Suy ra : D sai.

15 tháng 11 2018

Đáp án D

Phương pháp giải:

Xác định tâm mặt cầu ngoại tiếp đi qua các đỉnh của khối chóp bằng phương pháp dựng hình, từ đó dựa vào tính toán xác định bán kính – thể tích mặt cầu.

Lời giải:

5 tháng 1 2020

23 tháng 2 2021

Gọi HH là trung điểm của BCBC suy ra

AH=BH=CH=1\2BC=a\2.

Ta có: SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2

ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α

⇒tanα=SH\AH=√3⇒α=60∘

a: Xét ΔAHB và ΔCKA có

góc AHB=góc AKC=90 độ

AB=CA

góc HAB=góc ACK

=>ΔAHB=ΔCKA

b: ΔAHB=ΔCKA

=>AH=CK

Xet ΔHIA và ΔKIC có

IA=IC

AH=CK

góc HAI=góc ICK

=>ΔHIA=ΔKIC

=>IH=IK

c: \(S_{BCKH}=\dfrac{1}{2}\cdot\left(BH+CK\right)\cdot HK\)

\(=\dfrac{1}{2}\cdot HK^2=IM^2< =IA^2\)

Dấu = xảy ra khi M trùng với A

=>d vuông góc AI

26 tháng 1 2017

Chọn A

Cách 1:

Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB

Từ giả thiết tam giác ABC vuông cân tại B ta được 

Trong tam giác ICK vuông tại I .

Như vậy Ik > IB (vô lý).

TH2:  tương tự phần trên ta có 

D nên tam giác BIK vuông tại K và 

 

Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra: 

Vậy thể tích của khối chóp S.ABC là 

Cách 2: dùng phương pháp tọa độ hóa.

1 tháng 1 2020

Đáp án B.

Phương pháp:

Sử dụng công thức Côsin:

a 2 = b 2 + c 2 − 2 b c cos A

Cách giải:

Dựng hình bình hành ABCD (tâm I). Khi đó, A’B’CD là hình bình hành (do A ' B ' → = A B → = D C → )

⇒ A ' D / / B ' C ⇒ A ' B ; B ' C = A ' B ; A ' D  

Tam giác ABC vuông tại A 

⇒ B C = A B 2 + A C 2 = a 2 + a 3 2 = 2 a  

H là trung điểm của BC

⇒ H B = H C = a

Tam giác A’BH vuông tại H

⇒ A ' B = A ' H 2 + H B 2 = a 3 2 + a 2 = 2 a  

Tam giác ABC vuông tại A

⇒ cos A B C = A B B C = a 2 a = 1 2  

ABCD là hình bình hành

⇒ A B / / C D ⇒ D C B = 180 0 − A B C ⇒ cos D C B = − c osABC=- 1 2

 Tam giác BCD:

B D = B C 2 + C D 2 − 2 B C . C D . cos D C B = 2 a 2 + a 2 − 2.2 a . a . − 1 2 = a 7  

Tam giác CDH:

D H = C H 2 + C D 2 − 2 C H . C D . cos D C B = a 2 + a 2 − 2 a . a . − 1 2 = a 3  

Tam giác A’DH vuông tại H:

A ' D = A ' H 2 + H D 2 = a 3 2 + a 3 2 = a 6  

Tam giác A’BH:

cosBA ' D = A ' D 2 + A ' B 2 − B D 2 2 A ' D . A ' B = a 6 2 + 2 a 2 − 7 a 2 2. a 6 .2 a = 3 4 6 = 6 8 .