biet : bz-cy/a = cx-az/b= ay-bx/c
CMR : x/a=y/b=z/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: bx−cyabx−cya = cx−axbcx−azb = ay−bxcay−bxc
⇒ bx−cyabx−cya = a(bx−cy)a²a(bx−cy)a² = abx−acya²abx-acya²
cx−azbcx−axb = b(cx−az)b²b(cx−az)b² = bcx−baxb²bcx−baxb²
ay−bxcay−bxc = c(ay−bx)c²c(ay−bx)c² = cay−cbxc²cay−cbxc²
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
bx−cyabx−cya = cx−azbcx−axb = cy−bxccy−bxc = abx−acy+bcx−bax+cay−cbxa²+b²+c²abx−acy+bcx−bax+cay−cbxa²+b²+c² = 0
\(\Rightarrow\) bx - cy = 0
cx - ax = 0
ay - bx = 0
\(\Rightarrow\) bx = cy
cx = ax
ay = bx
\(\Rightarrow\) xcxc = ybyb
xaxa = xcxc
ybyb = xaxa
\(\Rightarrow\) xaxa = ybyb = xcxc
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cxy+cyz-azy+ayz-bxz}{ax+by+cz}=0\)
\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\)
\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\)
\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{a}{x}=\frac{b}{y}\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{bxz-cxy}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cxy+cxy-azy+ayz-bxz}{ax+by+cz}=\frac{0}{ax+by+cz}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow}\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\left(1\right)\\\frac{x}{a}=\frac{z}{c}\left(2\right)\\\frac{y}{b}=\frac{x}{a}\left(3\right)\end{cases}}}\)
Từ (1),(2),(3) suy ra \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
=\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
=\(\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
suy ra \(\frac{bz-cy}{a}=0\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)
\(\frac{cx-az}{b}=0\Rightarrow cx-az=0\Rightarrow cx=az\Rightarrow\frac{x}{a}=\frac{z}{c}\left(2\right)\)
từ (1) và (2) suy ra \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Bạn xem ở :
http://kiemtailieu.com/khoa-hoc-tu-nhien/tai-lieu/379-bdt-tu-cac-k-olympic/23.html
Lời giải:
Sửa đề: $z$ đầu tiên ở mẫu đổi thành $a$.
Ta có:
$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}$
$=\frac{abz-cya}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}$
$=\frac{abz-cya+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0$
$\Rightarrow bz-cy=cx-az=ay-bx=0$
$\Rightarrow bz=cy; cx=az; ay=bx$
$\Rightarrow \frac{x}{a}=\frac{y}{b}=\frac{z}{c}$
Ta có đpcm.
Vì bz-cy/a=cx-az/b=ay-bx/c
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2
theo tính chất của dãy tỉ số bằng nhau :
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...
= 0/a^2+b^2+c^2=0
vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)
vì cx-az/b=0=>cx=az=>x/a=z/c (2)
từ (1) và (2) => x/a=y/b=z/c
t i c k nhé!! 4645767856875897696890806895789568467856
cái này mà là toán lớp 7 á
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow abz=acy\Rightarrow\frac{y}{b}=\frac{z}{c};bcx=abz\Rightarrow\frac{x}{a}=\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)