Giá trị của số thực m sao cho lim x → − ∞ 2 x 2 − 1 m x + 3 x 3 + 4 x + 7 = 6 là
A. m = − 3
B. m = 3
C. m = 2
D. m = − 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2x^2-1\right)\left(mx+3\right)}{x^3+4x+7}=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2-\dfrac{1}{x^2}\right)\left(m+\dfrac{3}{x}\right)}{1+\dfrac{4}{x^2}+\dfrac{7}{x^3}}=2m\)
\(\Rightarrow2m=6\Rightarrow m=3\)
Bài 1:
Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0
=>m>3
Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0
=>m<3
Bài 4:
a: Vì \(a=3-\sqrt{2}>0\)
nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R
b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)
Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)
Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)
Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)
=9-4-1
=9-5
=4
Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)
\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)
y'= \(4x^3-4\left(m-1\right)x\)
Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)
\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)
Vậy \(m\in\) (−\(\infty\);2]
Đáp án B
lim x → − ∞ 2 x 2 − 1 m x + 3 x 3 + 4 x + 7 = lim x → − ∞ 2 − 1 x m + 3 x 1 + 4 x 2 + 7 x 3 = 2 m = 6 ⇔ m = 3