K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

29 tháng 8 2023

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=5x\left(1\right)\)

Ta có :

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge\left|x+1+x+2+x+3+x+4\right|=\left|4x+10\right|\)

\(pt\left(1\right)\Leftrightarrow\left|4x+10\right|=5x\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+10=5x\\4x+10=-5x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\\9x=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-\dfrac{10}{9}\end{matrix}\right.\) \(\left(thỏa.mãnx\inℚ\right)\)

22 tháng 2 2022

`Answer:`

`1/5+2/7-1<x<\frac{13}{3}+6/5+\frac{4}{15}`

`VT =1/5+2/7-1=\frac{17}{35}-1=\frac{-18}{35}`

`VP=\frac{13}{3}+6/5+\frac{4}{15}=\frac{83}{15}+\frac{4}{15}=\frac{203}{35}`

`=>\frac{-18}{35}<x<\frac{203}{35}`

`=>-18<x<203`

Vậy `-18<x<203` với `x\inZZ`

29 tháng 1 2022

\(\dfrac{1}{5}+\dfrac{2}{7}-1< x< \dfrac{13}{3}+\dfrac{6}{5}+\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{7}{35}+\dfrac{10}{35}-\dfrac{35}{35}< x< \dfrac{65}{15}+\dfrac{18}{15}+\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{-18}{35}< x< \dfrac{29}{5}\)

\(\Leftrightarrow\dfrac{-18}{35}< \dfrac{35x}{35}< \dfrac{203}{35}\)

\(\Leftrightarrow-18< 35x< 203\)

\(\Leftrightarrow x\in\left\{0;1;2;3;4;5\right\}\)

NV
22 tháng 7 2021

Không em, phải thỏa cả ĐKXĐ ban đầu chứ

Do đó \(x=-2\) \(\Rightarrow A=-1\) mới là GTNN của A

21 tháng 7 2017

10 tháng 12 2021

a: \(P=\dfrac{x^2+6x+9-x^2+6x-9-4}{\left(x-3\right)\left(x+3\right)}:\dfrac{3x-1}{x-3}\)

\(=\dfrac{4\left(3x-1\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{3x-1}=\dfrac{4}{x+3}\)

 

30 tháng 4 2021

x + y = 1 => y = 1 - x

A = x3 + y3 = (x + y)(x2 - xy + y2)

                   = x2 - x(1 - x) + (1 - x)2

                   = x2 - x + x2 + x2 - 2x + 1

                   = 3x2 - 3x + 1

                   = 3(x2 - x + \(\dfrac{1}{3}\))

                   = 3(x2 - 2x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}+\dfrac{1}{12}\))

                   = 3(x - \(\dfrac{1}{2}\))2 + \(\dfrac{1}{4}\) ≥ \(\dfrac{1}{4}\) ∀x

Dấu "=" xảy ra ⇔ x - \(\dfrac{1}{2}\) = 0 ⇔ x = \(\dfrac{1}{2}\)

Vậy minA = \(\dfrac{1}{4}\) ⇔ x = \(\dfrac{1}{2}\)