Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác cận tại Thể tích lăng trụ là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Kẻ A P ⊥ B C ( P ∈ B C ) ⇒ A ' P A ^ = 45 ° ⇒ A A ' = A P
Mà cos 60 ° = A P A B = 1 2 ⇒ A P = a ⇒ A A ' = a
⇒ V = A ' A . S A B C = a . 1 a . sin 120 ° = a 3 3
Chọn D.
Do tam giác A'AB vuông tại A nên theo pytago ta có
Lại có tam giác ABC vuông cân tại B nên
Thể tích khối lăng trụ đã cho
Ta có:
• A C = B C . sin 30 0 = a ; A B = B C . cos 30 0 = a 3 .
• V A B C . A ' B ' C ' = B B ' . S A B C = 2 a 3 . 1 2 . a 3 . a = 3 a 3 .
Đáp án D
Ta có: B C 2 = A B 2 + A C 2 − 2 A B . A C cos A = 2 A B 2 − 2 A B 2 cos 120 0 = 3 A B 2 ⇒ A B = A C = a
S A B C = 1 2 . a 2 sin 120 0 = 3 a 2 4
. Thể tích lăng trụ là: V = A A ' . S A B C = 3 a . 3 a 2 4 = 3 a 3 4
Phương pháp:
Xác định góc 30 ° (góc tạo bởi hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
Tính diện tích tam giác đáy và chiều cao lăng trụ rồi tính thể tích theo công thức V = B.h
Cách giải:
Ta có:
Chọn A.