Cho hàm số y=f(x) có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của m để phương trình 2f(x) +3m = 0 có 4 nghiệm phân biệt ?
A. 6
B. 7
C. 5
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tương đương với: f ( x ) = - m 2 phương trình có 3 nghiệm thực phân biệt - 4 < - m 2 < 2 ⇔ - 4 < m < 8 Các giá trị nguyên dương là m ∈ 1 , 2 . . . 7
Chọn đáp án B.
Từ bảng biến thiên ta dựng bảng biên thiên của y = f x như sau:
Quan sát bảng biến thiên của hàm số y = f x ta thấy
đường thẳng y = m cắt đồ thị hàm số y = tại 6 điểm phân biệt ⇔ 2 < m < 5 .
Do m ∈ ℤ nên m ∈ {3; 4} hay có 2 giá trị của m thỏa mãn
Chọn A.
Đáp án D
Hàm số f(x) có dạng f ( x ) = ( x + 2 ) ( x - 1 ) 2 Giao với trục Oy tại (0, 2) .
=> 2<m<4.
Chọn phương án D.
Đáp án A