tìm phân số tối giản a/b, biết:
a) cộng tử với 4 mẫu với 10 thì được phân số mới bằng phân số đã cho
b) Cộng mẫu vảo tử và mẫu thì được phân số mới gấp 2 lần phân số đã cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}=\frac{a-a-4}{b-b-10}=\frac{-4}{-10}=\frac{2}{5}\)
Vậy phân số \(\frac{a}{b}=\frac{2}{5}\)
\(b)\) Ta có :
\(\frac{2a}{b}=\frac{a+b}{b+b}\)
\(\Leftrightarrow\)\(\frac{a}{b}=\frac{a+b}{2b}:2\)
\(\Leftrightarrow\)\(\frac{a}{b}=\frac{a+b}{4b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{a+b}{4b}=\frac{a-a-b}{b-4b}=\frac{-b}{-3b}=\frac{1}{3}\)
Vậy phân số \(\frac{a}{b}=\frac{1}{3}\)
a) \(\frac{a}{b}=\frac{a+4}{b+10}\)
\(\Leftrightarrow a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow ab+10a=ba+4b\)
\(\Leftrightarrow10a=4b\)
\(\Leftrightarrow\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
Theo đề bài ra ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}\left(1\right)\)
Nêu tính chất hai phân số bằng nhau , từ ( 1 ) =>
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow ab+10a=ab+4b\)
\(\Leftrightarrow10a=4b\)
Do đó : \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b ) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\left(gt\right)\) nêu theo tính chất hai phân số bằng nhau , ta có :
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow ab+b^2=4ab\)
\(\Leftrightarrow b^2=3ab\left(2\right)\)
Mà : \(b\ne0\)nên từ ( 2 )=> \(b=3a\)tức là : \(\frac{a}{b}=\frac{1}{3}\)
Vậy phân số tối giản \(\frac{a}{b}=\frac{1}{3}\)
Theo đề, ta có:
\(\dfrac{a+4}{b+10}=\dfrac{a}{b}\)
=>ab+4b=ab+10a
=>4b=10a
=>4b=10a
=>b/a=10/4
hay a/b=2/5
a) Theo đề bài, ta có:
\(\frac{a}{b}=\frac{a+4}{b+10}\) \(\left(1\right)\)
nên theo tính chất hai phân số bằng nhau, từ \(\left(1\right)\) ta suy ra:
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow\) \(ab+10a=ab+4b\)
\(\Leftrightarrow\) \(10a=4b\)
Do đó, \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\) \(\left(gt\right)\) nên theo tính chất hai phân số bằng nhau, ta có:
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow\) \(ab+b^2=4ab\)
\(\Leftrightarrow\) \(b^2=3ab\) \(\left(2\right)\)
Mà \(b\ne0\) nên từ \(\left(2\right)\) suy ra \(b=3a\) , tức là \(\frac{a}{b}=\frac{1}{3}\)
Vậy, phân số tối giản \(\frac{a}{b}\) cần tìm là \(\frac{1}{3}\)
gọi a,b là tử & mẫu của ps đó. Ta có:
(a+b)/b=5a/b
<=>a/b+b/b-5a/b=0
<=>-4a/b+1=0
<=>a/b=1/4
Vậy a=1, b=4
Ráp lại, ta có:
1/4 là pstg
(1+4)/4=5/4 gấp 5 lần 1/4
Vậy ps cần tìm là 1/4
minh chi lam dc phan a thui:
a)ta co:a+4/b+10=a/b
(a+4).b=(b+10).a
ab+4b=ba+10a
4b=10a
=)2b=5a
=)a/b=2/5