Phương trình 2 cos 2 x + cos x - 3 = 0 có nghiệm là
A. k π
B. π 2 + k 2 π
C. π 2 + k π
D. k 2 π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)
\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)
\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)
\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)
Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:
\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
Đáp án B
+ Ta có
tan φ = a 1 sin φ 1 + a 2 sin φ 2 a 1 cos φ 1 + a 2 cos φ 2 ⇔ 1 3 = a 1 + 3 2 a 2 - 1 2 a 2 ⇒ a 1 = - 1 2 3 + 3 2 a 2
⇔ a 1 = - 2 3 a 2 .
-> Với a 1 và a 2 trái dấu nhau -> độ lệch pha của hai dao động cos Δ φ = - cos 2 π 3 - π 2 = - 3 2 .
+ Áp dụng công thức tổng hợp dao động, ta có:
25 = a 1 2 + a 2 2 - 3 a 1 a 2 thay a 1 = - 2 3 a 2 , ta thu được phương trình a 2 2 3 = 25 ⇒ a 2 = ± 5 3 ⇒ a 1 a 2 = - 50 3 .